

# Supporting Information

## Highly active and robust [DBUH]Br@PILCOOH catalyst for CO<sub>2</sub> Cycloaddition: One-pot fabrication via ionic liquid immobilization on poly(ionic liquid)s

Jiaxiang Qiu <sup>a</sup>, Huadeng Li <sup>a</sup>, Yanbin Zeng <sup>a</sup>, Yuqiang Cheng <sup>b</sup>, Ke Zheng <sup>b</sup>, Peng Liu <sup>a</sup>, Xiaoxia Wang <sup>b, \*</sup>, Guanqun Xie <sup>a, \*</sup>, Chunshan Li<sup>c,\*</sup>

<sup>a</sup> *School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.*

<sup>b</sup> *School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan, 523808, PR China.*

<sup>c</sup> *Institute of Process Engineering, CAS, Beijing 100049, PR China.*

*\*Corresponding author.*

*E-mail address:* wangxx@dgut.edu.cn (Xiaoxia Wang), gqxie@dgut.edu.cn (Guanqun Xie), csli@ipe.ac.cn

### **S1: Synthesis of catalyst ILCOOH and [DBUH]Br [1].**

3-Bromopropionic acid (2.0 g, 0.013 mol) was dissolved in anhydrous acetonitrile (2 mL) in a 10 mL Schlenk tube. DMAEMA (2.0 mL, 0.011 mol) was then added to the solution. The reaction mixture was stirred at 60 °C for 24 hours. After cooling to r.t., methyl tert-butyl ether (20 mL) was introduced, resulting in the precipitation of a significant amount of solid. The solid was collected by centrifugation and washed three times with ethyl acetate. The desired product ILCOOH was obtained as white powder (3.0 g, 90% yield) after vacuum drying at room temperature. The <sup>1</sup>H NMR spectrum is shown in **Fig. S1** and the data are listed here. <sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>): δ 12.80 (s, 1H), 6.08 (s, 2H), 5.75 (t, J = 1.8 Hz, 2H), 4.54 - 4.50 (m, 4H), 3.80 - 3.75 (m, 4H), 3.68 - 3.62 (m, 4H), 3.15 (s, 10H), 2.90 - 2.83 (m, 4H), 1.90 (s, 5H).

**Fig. S1.** <sup>1</sup>H NMR(600 MHz, DMSO) spectra of the product from ILCOOH .

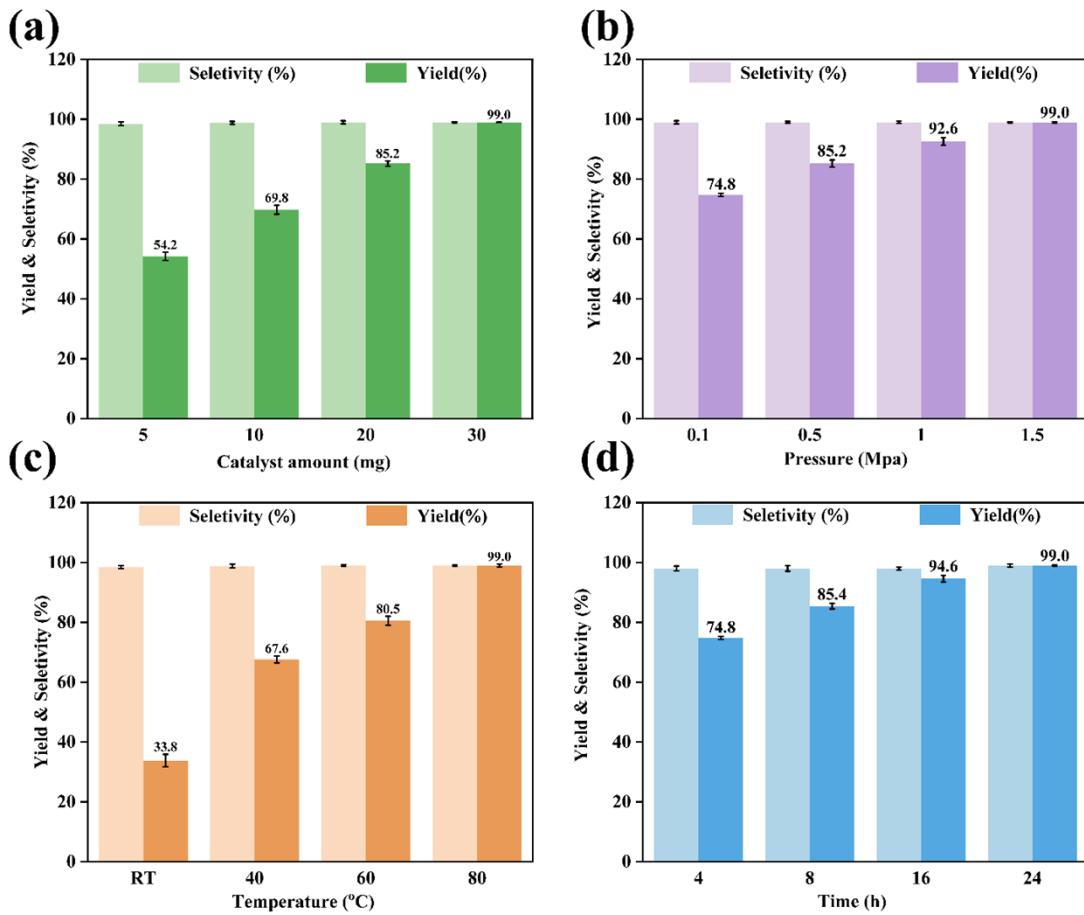
## S2: Synthesis of IL [DBUH]Br [2].

$\text{NH}_4\text{Br}$  (0.685 g, 7 mmol) was dissolved in anhydrous methanol (10 mL) and DBU (1.05 mL, 7 mmol) was then added. The mixture was stirred overnight at 60 °C under reflux. Upon completion of the reaction, the solvent was removed by rotary evaporation. The concentrated solution was dissolved in dichloromethane (6 mL) and added to ethyl acetate (14 mL), resulting in the formation of a significant amount of precipitate. The precipitate was collected by centrifugation and washed three times with methyl tert-butyl ether (20 mL each time). Finally, [DBUH]Br was obtained as white powder (2.8 g, 87% yield) after vacuum drying at room temperature (Fig. S2.).  $^1\text{H}$  NMR (600 MHz,  $\text{DMSO-d}_6$ )  $\delta$  3.59 - 3.54 (m, 1H), 3.49 (t,  $J$  = 5.9 Hz, 1H), 3.25 (t,  $J$  = 5.8 Hz, 1H), 2.70 - 2.66 (m, 1H), 1.92 (p,  $J$  = 5.8 Hz, 1H), 1.67 (q,  $J$  = 5.8 Hz, 1H), 1.62 (tt,  $J$  = 10.6, 5.6 Hz, 2H).

**Fig. S2.**  $^1\text{H}$  NMR(600 MHz, DMSO) spectra of the product from [DBUH]Br.

**S3. GC-MS spectra of the reaction mixture for the preparation of the cyclic carbonates.**

**Fig. S3.** GC-MS detection of the reaction mixturer of CO<sub>2</sub> - ECH cycloaddition catalyzed by [DBUH]Br@PILCOOH.


#### **S4. XPS spectra of the catalysts.**

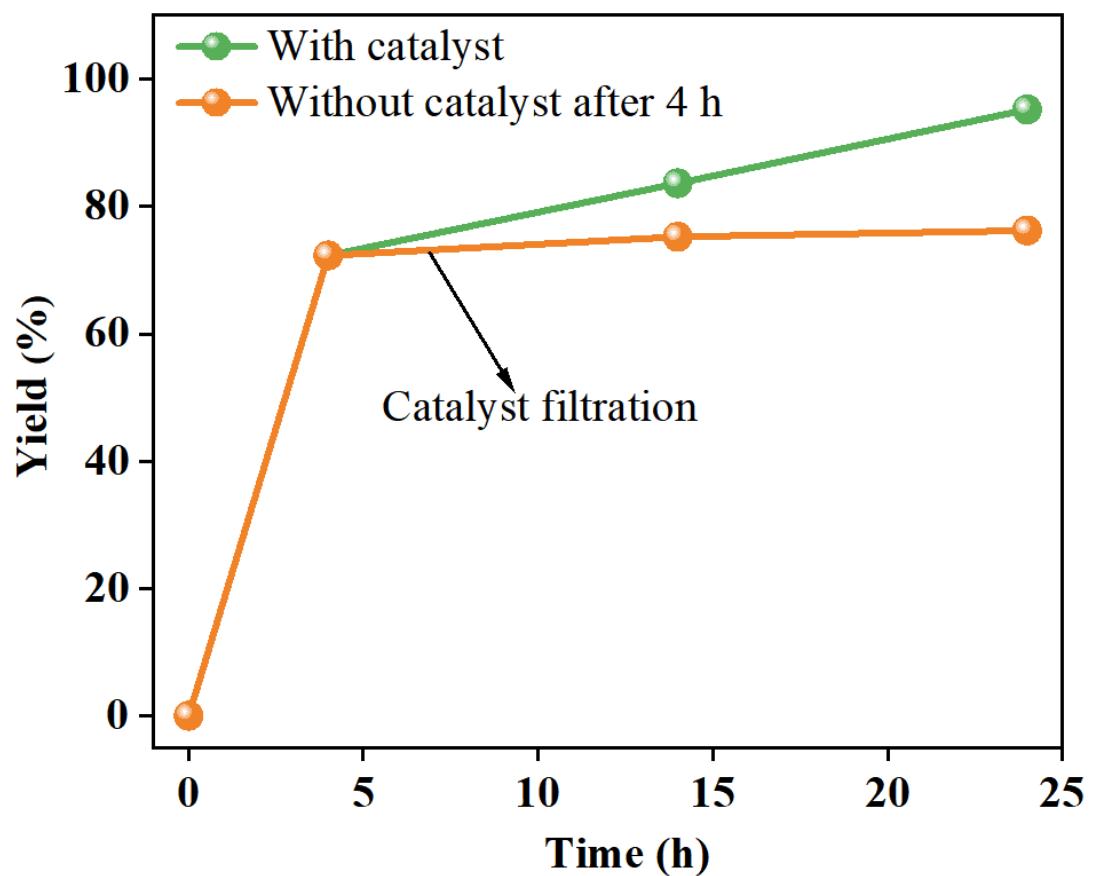
**Fig. S4.** XPS spectra of [DBUH]Br@PIL and [DBUH]Br.

**Fig. S5.** XPS spectra of [DBUH]Br@PIL-1/0.6/1.

## S5. Optimization of the reaction parameters

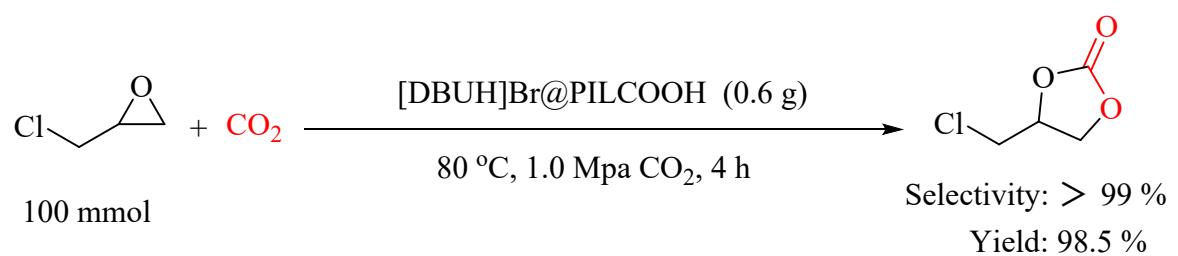
Using the as-prepared [DBUH]Br@PILCOOH catalyst, the effects of catalyst dosage, reaction temperature, reaction time and CO<sub>2</sub> pressure on the catalytic activity were examined (**Fig. S6**). As illustrated in **Fig. S6a**, increasing the amount of [DBUH]Br@PILCOOH led to a higher CPC yield. The yield reached 97.8% with 30 mg of catalyst, and no significant improvement was observed with further increase in catalyst dosage. In terms of temperature, the product yields were low at room temperature (33.8%) but increased significantly to 97.8% as the temperature rose to 80 °C (Fig. S6b). Considering the mildness of the conditions and energy consumption associated with higher temperature, 80 °C was chosen as the optimal temperature. As shown in Fig. S6c, the CPC yield rapidly increased to 74.8% within 4 hours at 80 °C, then gradually reached 97.8% over the next 20 hours, with no notable yield increase for extended reaction times. Regarding the reaction pressure, when CO<sub>2</sub> pressure rose from 0.1 to 1.5 MPa, the yield increased from 74.8% to 99% in 4 hours (Fig. S6d).




**Fig. S6.** Effect of reaction conditions on the catalytic activity. (a) The effect of catalyst dosage. ECH (5 mmol), CO<sub>2</sub> (1 atm, balloon), 24 h; (b) The effect of temperature. ECH (5 mmol), [DBUH]Br@PILCOOH (30 mg), CO<sub>2</sub> (1 atm, balloon), 24 h; (c) The effect of time. ECH (5 mmol), [DBUH]Br@PILCOOH (30 mg), CO<sub>2</sub> (1 atm, balloon), 80 °C; (d) The effect of pressure. ECH (5 mmol), [DBUH]Br@PILCOOH (30 mg), 80 °C, 4 h.

## S6. Comparison of this work with the literature reports

**Table S1.** A comparison of the as-prepared catalyst with various reported catalytic systems concerning the  $\text{CO}_2$  cycloaddition with styreneoxide.


| Entry | Catalyst system                             | Temperature (°C) | Time (h) | Pressure (MPa) | Yield (%) | Ref.      | Chemical reaction scheme                                                                                     |
|-------|---------------------------------------------|------------------|----------|----------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------|
|       |                                             |                  |          |                |           |           | <chem>c1ccccc1C1CO1</chem> + <chem>CO2</chem> $\xrightarrow{\text{Catalyst}}$ <chem>c1ccccc1C1COCC1=O</chem> |
| 1     | POM3-IM (Ethanol)                           | 120              | 12       | 1              | 89        | [3]       |                                                                                                              |
| 2     | $\text{ZnBr}_2/\text{polymer(A2+A6)}$ (DMF) | 25               | 120      | 0.1            | 93        | [4]       |                                                                                                              |
| 3     | MIL-101-IMBr-6 (Dichloromethane)            | 80               | 4        | 0.8            | 47        | [5]       |                                                                                                              |
| 4     | UIO-67-IL (TBAB)                            | 90               | 3        | 0.1            | 98        | [6]       |                                                                                                              |
| 5     | POM@ImTD-COF (TBAB)                         | 80               | 24       | 0.1            | 97        | [7]       |                                                                                                              |
| 6     | IL@P-BC (TBAB)                              | 100              | 5        | 3              | 89        | [8]       |                                                                                                              |
| 7     | PIL-DVB-IV                                  | 110              | 6        | 2              | 89        | [9]       |                                                                                                              |
| 8     | MPOP-4A-IL                                  | 120              | 16       | 1              | 86        | [10]      |                                                                                                              |
| 9     | I-HMON-L-C-2.5                              | 80               | 10       | 0.5            | 94        | [11]      |                                                                                                              |
| 10    | Pym-EtBr@Zn-MOF-NH <sub>2</sub>             | 90               | 6        | 0.6            | 95        | [12]      |                                                                                                              |
| 11    | MA-PDA IL@COF                               | 70               | 14       | 0.1            | 92        | [13]      |                                                                                                              |
| 12    | HPMBr0.5                                    | 80               | 36       | 0.1            | 94.7      | [14]      |                                                                                                              |
| 13    | HIP-His-1                                   | 120              | 12       | 1.25           | 93        | [15]      |                                                                                                              |
| 14    | [DBUH]Br@PILCOOH                            | 80               | 24       | 0.1            | 98        | This work |                                                                                                              |

**S7. Hot filtration experiment.**



**Fig. S7.** Reaction conditions: ECH 20 mmol, [DBUH]Br@PILCOOH 120 mg, 80 °C, CO<sub>2</sub> (1 atm, balloon), 0 ~ 24 h.

**S8. The scale-up synthesis of CPC.**



**Scheme S1.** Scale-up synthesis of CPC.

## References

- [1] F. Liu, Y. Gu, P. Zhao, J. Gao, M. Liu, Cooperative conversion of CO<sub>2</sub> to cyclic carbonates in dual-ionic ammonium salts catalytic medium at ambient temperature, *ACS Sustainable Chem. Eng.* 7 (2019) 5940-5945.
- [2] N. Fanjul-Mosteirín, C. Jehanno, F. Ruipérez, H. Sardon, A.P. Dove, Rational study of DBU salts for the CO<sub>2</sub> insertion into epoxides for the synthesis of cyclic carbonates, *ACS Sustainable Chem. Eng.* 7 (2019) 10633-10640.
- [3] J. Wang, W. Sng, G. Yi, Y. Zhang, Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO<sub>2</sub> capture and conversion, *Chem. Commun.* 51 (2015) 12076-12079.
- [4] J. Li, D. Jia, Z. Guo, Y. Liu, Y. Lyu, Y. Zhou, J. Wang, Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO<sub>2</sub> capture and fixation with epoxides, *Green Chem.* 19 (2017) 2675-2686.
- [5] D. Liu, G. Li, H. Liu, Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO<sub>2</sub> and epoxides under mild condition, *Appl. Surf. Sci.* 428 (2018) 218-225.
- [6] L. Ding, B. Yao, W. Jiang, J. Li, Q. Fu, Y. Li, Z. Liu, J. Ma, Y. Dong, Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO<sub>2</sub> adsorption and catalytic property for CO<sub>2</sub> cycloaddition with epoxides, *Inorg. Chem.* 56 (2017) 2337-2344.
- [7] Y. Zhang, D. Yang, S. Qiao, B. Han, Synergistic catalysis of ionic liquid-decorated covalent organic frameworks with polyoxometalates for CO<sub>2</sub> cycloaddition reaction under mild conditions, *Langmuir* 37 (2021) 10330-10339.
- [8] J. Peng, R. Guo, X. Shi, P. Zhang, F. Qiu, W. Li, C. Wei, S. Miao, Highly efficient and recyclable conversion of CO<sub>2</sub> using supported metal-free ionic liquids on ball clay, *Appl. Clay Sci.* 228 (2022) 106645.
- [9] H. Du, Y. Ye, P. Xu, J. Sun, Experimental and theoretical study on dicationic imidazolium derived poly(ionic liquid)s for catalytic cycloaddition of CO<sub>2</sub>-epoxide, *J. CO<sub>2</sub> Util.* 67 (2023) 102325.
- [10] Y. Liu, S. Li, Y. Chen, T. Hu, M. Pudukudy, L. Shi, S. Shan, Y. Zhi, Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO<sub>2</sub> cycloaddition, *J. Colloid Interface Sci.* 652 (2023) 737-748.
- [11] G. Anvarian-Asl, S. Joudian, S. Todisco, P. Mastorilli, M. Khorasani, Controllable synthesis of hollow mesoporous organosilica nanoparticles with pyridine-2,6-bisimidazolium frameworks for CO<sub>2</sub> conversion, *Nanoscale* 16 (2024) 16977-16989.
- [12] M. Eftekhar, I. Khosravi, Efficacy of tethered pyridinium-based ionic liquid immobilized on Zn-MOF-NH<sub>2</sub> for effectively converting CO<sub>2</sub> into cyclic carbonates under Co-Catalyst-free and solvent-free conditions, *J. Mol. Liq.* 409 (2024) 125413.
- [13] S. Sarkar, S. Ghosh, R. Sani, J. Seth, A. Khan, Sk. M. Islam, Covalent immobilization of quaternary ammonium salts on covalent organic framework: sustainable intensification strategy for the synthesis of cyclic carbonates from CO<sub>2</sub>, *ACS Sustainable Chem. Eng.* 11 (2023) 14422-14434.
- [14] H. Lyu, X. Wang, W. Sun, E. Xu, Y. She, A. Liu, D. Gao, M. Hu, J. Guo, K. Hu, J. Cheng, Z. Long, Y. Liu, P. Zhang, Maximizing the ionic liquid content and specific surface area in hierarchically nanoporous hypercrosslinked poly(ionic liquid)s towards the efficient conversion of CO<sub>2</sub> into cyclic carbonates, *Green Chem.* 25 (2023) 3592-3605.

[15] J. Wang, J. Chen, H. Shan, Z. Shi, J. Liu, Y. Zang, T. Aoki, One-Pot synthesis of amino acid-based functional hyper-crosslinked ionic polymers as heterogeneous catalysts for efficient fixation of CO<sub>2</sub> with epoxides, *Sep. Purif. Technol.* 354 (2025) 129036.