Supporting Information

Nitrogen-Doped Coal-based Porous Carbon and Reduced Graphene Oxide Composites for High-Performance Symmetrical Supercapacitor

Hongze Zhu^{a,b,e}, Fuyang Ren^{a,b,e}, Haoran Pan^{a,b,e}, Lu Tian^{b,e},Tao Wang^c, Jianglong Yu^{b,d,e}, Jinxiao Dou^{b,e,*}, Dongling Wu^{c,*}, Xingxing Chen ^{a,b,e,*}

^a Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China

^b Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China

^c State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, China

^d Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China

^e Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China

* Corresponding authors

E-mail addresses: xingchenstar79@163.com (X.X. Chen), doujx123@163.com (J. X. Dou), wudl@xju.edu.cn (D.L. Wu)

Figure S1. (a) N_2 adsorption-desorption isotherm, and (b) pore size distribution of N-C/rGO-700. (c) N_2 adsorption-desorption isotherm, and (d) pore size distribution of N-C/rGO-900.

Figure S2. Raman spectrum of original lignite.

Figure S3. Thermogravimetric analysis of lignite samples.

Figure S4. XPS spectra of (a) C 1s, (b) O 1s, and (c) N 1s for N-C/rGO-700.

Figure S5. XPS spectra of (a) C 1s, (b) O 1s, and (c) N 1s for N-C/rGO-900.

based materials reported in literature.				
Material	Specific	Preparation	Electrolyte	Reference
	Capacitance	Method	Туре	
	(F/g) at 1 A/g			
AC-AC	126.88	Pyrolysis	Liquid	57
DP-900	167.7	Pyrolysis	Liquid	58
KOH-800	178.8	Pyrolysis	Liquid	59
AC-700	202	Pyrolysis	Gel	60
НС	118	Pyrolysis	Liquid	61
RC	135.5	Pyrolysis	Liquid	62
EDMCT	90	Hydrothermal	Liquid	63
		method		
N-C/rGO-800	207	Pyrolysis	Liquid	This work

Table S1 Comparison of the representative N-C/rGO-800 composite with carbon-