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Experiments
1. Materials and instruments

1,8-diaminoanthracene are synthesized according to literature. Terephthalaldehyde (reagent grade)
and m-Phthalaldehyde (reagent grade) were purchased from Energy Chemical. Mesitylene (reagent
grade), 1,4-dioxane (reagent grade), Acetic Acid (AcOH, reagent grade), tetrahydrofuran (reagent
grade, THF) and acetone (reagent grade) were purchased from Sigma-Aldrich Corporation. The
solvent THF and acetone were dried under conventional methods. Unless otherwise noted, the
chemicals were used as received.

The Element Analysis was performed on a Vario EL III element analyzer (Elementar, Germany)

CO%experimental

by using the operation mode of CHN. The purities of OMMs are calculated by X

C%theoretical

H% i tal N% i tal . ..
100%, — 2222 X 100%, and ——2=2% x 100%, respectively. The minimum calculated
H%theoretical N%¢theoretical

value among three elements was selected as the reasonable purity for each OMM. Scanning electron
microscopy (SEM) was carried out using a FEI Quanta FEG 250 scanning electron microscopes,
samples were dispersed in ethanol then dropped 0.8 pL on a mica plate over a slice of conductive
adhesive which adhered to a sample holder, and then coated with Pt using a sputter coater sputtered
for 60 s before SEM measurement. The sample preparation methods for Energy Dispersive X-Ray
(EDX) were identical with SEM. Transmission electron microscopy (TEM) was conducted on a FEI
TECNALI 20 operating at 190 kV, samples for TEM were dispersed in ethanol then dropped on
copper grids covered with carbon film until the solvent was evaporated. Fourier transform infrared
spectroscopy was carried out with a BRUKER HQLO00S5 FTIR spectrometer and Bruker Tensor 27
in the 400-4000 cm™! region by using the Attenuated Total Reflection (ATR). Solid-state '3C NMR
cross polarization (CP) spectra was performed on Agilent 600 DD2 spectrometer at a resonance
frequency of 150.45 MHz. '3C CP/MAS NMR spectra was recorded with spinning rate of 15k Hz
with a 4 mm probe at room temperature with a delay time of 3 s and a contact time of 2 ms. Mass
spectral data were obtained by using a DCTB matrix-assisted laser desorption/ionization time of
fight mass spectrometry (MALDI-TOF MS) instrument. Powder X-ray diffraction (PXRD)
measurement was performed on a Bruker D8 Advance diffractometer using Cu Ka radiation over
the range of 5-60 °. Thermal gravimetric analyses (TGA) was carried out on a TA Q20 by heating
the samples from 30 to 800 °C under nitrogen atmosphere at a heating rate of 10 °C min’!, samples
were degassed at 120 °C for 1 h under vacuum before analysis. The surface areas and pore size
distributions were determined using ASAP 2420 accelerated surface area and porosimetry system
(Micromeritics Instrument Corporation, USA) by nitrogen adsorption and desorption at 77 K,

samples were degassed at 120 °C for 10 h under vacuum before measurement.
2



2. Synthesis of OMM-1 and OMM-2
2.1 Synthesis of OMM-1
A mixture of 1,8-diaminoanthracene (41.6 mg, 0.2 mmol) and terephthalaldehyde (26.8 mg, 0.2
mmol) was placed into 300 mL Parr 4560 Mini pressure reactor, after that the mixture of
mesitylene/1,4-dioxane/6M AcOH (19/1/2 by vol., 11 mL) was added into reactor smoothly After
reactor degassed by three freeze-pump-thaw cycles and purged with nitrogen, the reactor was heated
up to 120 °C and remained for 72 h without any disturbance. Then the system was cooled to room
temperature and the product was collected by centrifugation. After washed with anhydrous
tetrahydrofuran (THF) and acetone and dried under dynamic vacuum at 120 °C for 10 h, the product
was collected as a brick red powder (53 mg, 86%). The theoretical content of C, H, N are 86.25%,
4.61% and 9.14% for OMM-1. The experimental content of C, H, N were87.87%, 5.30% and 8.79%
based on element analysis. Then the calculated purity of OMM-1 in powder was 96.13%.
2.2 Synthesis of OMM-2

A mixture of 1,8-diaminoanthracene (62.4 mg, 0.3 mmol) and m-Phthalaldehyde (40.2 mg, 0.3
mmol) was added to a heavy-wall pressure reactor, then a mixture of mesitylene/1,4-dioxane/6M
AcOH (19/1/2 by vol., 16.5 mL) was added. Next, the reactor was degassed by three freeze-pump-
thaw cycles and purged with nitrogen. The reactor was sealed and heated at 120 °C for 3 days under
undisturbed condition, when the system was cooled to room temperature, the product was collected
by centrifugation, washed with anhydrous THF and acetone, and then dried under dynamic vacuum
at 120 °C for 10 hours to afford a yellow powder (92 mg, 83%). The theoretical content of C, H, N
are 86.25%, 4.61% and 9.14% for OMM-2. The experimental content of C, H, N were 84.53%, 5.12%
and 8.70% based on element analysis. Then the calculated purity of OMM-2 in powder was 95.19%.
3. lodine adsorption and desorption
3.1 lodine vapor adsorption experiment procedures

Firstly, the OMM powder and excess iodine were placed in sealed containers at 75 °C under
ambient pressure. After that, the sample weight before and after iodine vapor adsorption was
compared by gravimetric analysis to determine the iodine enrichment of OMMs.
3.2 lodine desorption experiment procedures

Iodine desorption experiment was performed as follows: [L@OMM-1 was put in a heat-resistant
bottle and heated at 125 °C under ambient pressure. The release efficiency was calculated by (mo-
my)/m; x 100wt%, where ‘my’ is the mass of the iodine trapped in L@OMM-1, ‘m;’ is the mass of
L@OMM-1 at a certain time, and ‘mo’ is the initial mass of L@OMM-1 without heat at the

beginning.
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Fig. S1 Solid-state '3C CP/MAS NMR spectrum of OMM-2.
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Fig. S2 HRMS spectrum of OMM-1.
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Fig. S3 HRMS spectrum of OMM-2.
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Fig. S4 TGA spectra of OMM-1 and OMM-2.



Fig. S6 SEM and TEM images of OMM-2.
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Fig. S7 PXRD spectra of OMM-1 and OMM-2.
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Fig. S8 Pore-size distribution of OMM-1 and OMM-2.
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Fig. S9 Todine vapor adsorption of OMM-1 at 75 °C under ambient pressure.
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Fig. S10 XPS spectra of OMM-1.
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Fig. S11 XPS spectra of L@OMM-1.
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Fig. S12. PXRD spectra of L@OMM-1 and regenerated OMM-1 powders.
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Fig. S13 ATR-FT-IR spectrum of regenerated OMM-1 powder.
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Table S1. Porosity parameters of the OMMs.

Materials Seet (m?-g™) Smicro (m? g1) Viotal (cm? g1) Dpore (nm)
OMM-1 95.97 - 0.23 11.60
OMM-2 11.53 1.76 0.03 11.05

Table S2. Summary of iodine uptake capacity for some of the reported porous adsorbents.
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