Supporting Information

Exploring the catalytic and anticancer activity of gold(I) complexes bearing 1,3,5-triaza-7-phosphaadamantane (PTA) and related ligands

Nuno Reis Conceição,*¹ Abdallah G. Mahmoud,^{2,3} Martin C. Dietl,⁴ Isabella Caligiuri,⁵ Flavio Rizzolio,^{5,6} Sónia A. C. Carabineiro,*^{1,2} Matthias Rudolph,⁴ M. Fátima C. Guedes da Silva,^{1,7} Armando J. L. Pombeiro,¹ A. Stephen K. Hashmi,⁴ and Thomas Scattolin*⁸

¹ Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

² LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

³ Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt

⁴ Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

⁵ Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy

⁶Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy

⁷ Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

⁸ Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy

Figure S1. ¹H NMR spectrum of compound 1 collected in (CD₃)₂SO (400 MHz).

Figure S3. ¹³C NMR spectrum of compound 1 collected in (CD₃)₂SO (400 MHz).

71.41
71.33

-50.37

Figure S5. ¹H NMR spectrum of compound 2 collected in (CD₃)₂SO (400 MHz).

Figure S7. ¹³C NMR spectrum of compound 2 collected in (CD₃)₂SO (600 MHz).

Figure S8. DEPT NMR spectrum of compound 2 collected in (CD₃)₂SO (600 MHz).

Figure S9. ¹H NMR spectrum of compound 3 collected in (CD₃)₂SO (600 MHz).

Figure S11. ¹³C NMR spectrum of compound **3** collected in (CD₃)₂SO (600 MHz).

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm)

Figure S13. ¹H NMR spectrum of compound 4 collected in (CD₃)₂SO (400 MHz).

Figure S15. ¹³C NMR spectrum of compound 4 collected in (CD₃)₂SO (400 MHz).

Figure S17. HSQC NMR spectrum of compound 4 collected in (CD₃)₂SO (400 MHz).

6.5

f2 (ppm)

6.0

5.5

5.0

4.5

7.0

3.5

4.0

9.0

8.5

8.0

7.5

f2 (ppm)

Figure S18. COSY NMR spectrum of compound 4 collected in (CD₃)₂SO (400 MHz).

Figure S19. ¹H NMR spectrum of compound 5 collected in (CD₃)₂SO (400 MHz).

f1 (ppm)

Figure S23. HSQC NMR spectrum of compound 5 collected in (CD₃)₂SO (400 MHz).

Figure S24. COSY NMR spectrum of compound 5 collected in (CD₃)₂SO (400 MHz).

Figure S25. ATR-FTIR spectrum of compound 1.

Figure S26. ATR-FTIR spectrum of compound 2.

Figure S27. ATR-FTIR spectrum of compound 3.

Figure S28. ATR-FTIR spectrum of compound 4.

Figure S29. ATR-FTIR spectrum of compound 5.

Figure S30. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 1 on AC.

Figure S31. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 1 on AC-ox.

Figure S32. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 1 on AC-ox-Na.

Figure S33. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 2 on AC.

Figure S34. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 2 on AC-ox.

Figure S35. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 2 on AC-ox-Na.

Figure S36. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 3 on AC.

Figure S37. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 3 on AC-ox.

Figure S38. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 3 on AC-ox-Na.

Figure S39. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 4 on AC.

Figure S40. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 4 on AC-ox.

Figure S41. Heterogenization UV-Vis profiles throughout time of the supernatant from compound **4** on AC-ox-Na.

Figure S42. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 5 on AC.

Figure S43. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 5 on AC-ox.

Figure S44. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 5 on AC-ox-Na.

Figure S45. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 1 on CNT.

Figure S46. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 1 on CNT-ox.

Figure S47. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 1 on CNT-ox-Na.

Figure S48. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 2 on CNT.

Figure S49. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 2 on CNT-ox.

Figure S50. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 2 on CNT-ox-Na.

Figure S51. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 3 on CNT.

Figure S52. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 3 on CNT-ox.

Figure S53. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 3 on CNT-ox-Na.

Figure S54. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 4 on CNT.

Figure S55. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 4 on CNT-ox.

Figure S56. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 4 on CNT-ox-Na.

Figure S57. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 5 on CNT.

Figure S58. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 5 on CNT-ox.

Figure S59. Heterogenization UV-Vis profiles throughout time of the supernatant from compound 5 on CNT-ox-Na.

Sample	S _{BET}	Vp	L	V _{micro}	Sext	СО	CO ₂
	(m²/g)	(cm/g)	(nm)	(cm ³ /g)	(m²/g)	(mmol/g)	(mmol/g)
AC	974	0.67	_	0.348	260	643	179
AC-ox	914	0.62	_	0.324	247	4930	2596
AC-ox-Na	610	0.35	_	0.251	80	5012	2883
CNT	257	2.89	_	~0	257	142	89
CNT-ox	400	1.89	_	~0	400	1475	729
CNT-ox-Na	350	1.45	_	~0	350	1079	838

Table S1. Characterization of carbon materials by adsorption of N₂ at -196 °C: surface area (S_{BET}), total pore volume (V_p), micropore volume (V_{mic}), average mesopore width (L), micropore volume (V_{micro}), and external area (S_{ext}) obtained by adsorption of N₂ at -196°C and amounts of desorbed CO and CO₂ determined by temperature programmed desorption. Adapted from our previous publication [63].