Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

A novel covalent organic framework containing triazine-trithiophene for dual-mode fluorescent and colorimetric detection of Fe²⁺ and Fe³⁺ in water, kale and bovine liver samples

Huaiyi Zhang^a, Zeeshan Ali^a, Wenzhong Hu^{b*}, Guang Wang^{a,b*}

^aFaculty of Chemistry, Northeast Normal University, Changchun 130024, PR China ^bSchool of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, 519080, P.R. China

> Corresponding author: Guang Wang Tel: 86+431+85099371; E-mail: wangg923@nenu.edu.cn (G. Wang)

Corresponding author: Wenzhong Hu Tel: 86+756+7626318; E-mail: hwz@dlnu.edu.cn

Contents for Supporting Information

Fig. S1 ¹³ C CP/MAS NMR of BTTC-TTA COF
Fig. S2 PXRD patterns of BTTC, TTA and BTTC-TTA COF
Fig. S3. HR-TEM image of BTTC-TTA COF6
Fig. S4 Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of
different metal ions (30 µL, 20 mM) in ethanol
Fig. S5 Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of
different metal ions (30 µL, 20 mM) in methanol7
Fig. S6 Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of
different metal ions (30 µL, 20 mM) in water7
Fig. S7 Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of
different metal ions (30 µL, 20 mM) in CH ₃ CN
Fig. S8 Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of
different metal ions (30 µL, 20 mM) in 1,4-dioxane
Fig. S9 Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in DMF after the
addition of different anions (30 μ L, 20 mmol/L) in DMF ($\lambda_{ex} = 350$ nm)9
Fig. S10 Change in the fluorescence intensity of BTTC-TTA COF (3 mL, 0.05 g/L) with time after
the addition of Fe ²⁺ (30 μ L, 20 mM) in DMF ($\lambda_{ex} = 350$ nm)9
Fig. S11 Change in the fluorescence intensity of BTTC-TTA COF (3 mL, 0.05 g/L) with time after
the addition of Fe ³⁺ (30 μ L, 20 mM) in DMF ($\lambda_{ex} = 350$ nm)10
Fig. S12 The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in DMF after
the addition of different anions (30 $\mu L,$ 20 mmol/L) in DMF10
Fig. S13. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in ethanol after
the addition of different metal ions (30 µL, 20 mmol/L)11
Fig. S14. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in methanol
after the addition of different metal ions (30 µL, 20 mmol/L)11
Fig. S15. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in H_2O after the
addition of different metal ions (30 µL, 20 mmol/L)12
Fig. S16. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in 1,4-dioxane
after the addition of different metal ions (30 µL, 20 mmol/L)12

Fig. S17. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in CH ₃ CN after
the addition of different metal ions (30 μ L, 20 mmol/L)13
Fig. S18. SEM images of (a) BTTC-TTA COF, (b) BTTC-TTA COF@Fe ²⁺ and (c) BTTC-TTA
COF@Fe ³⁺
Fig. S19 The fluorescence spectra of BTTC-TTA COF in DMF in the presence and absence of Fe^{2+}
ions and EDTA. "I" indicates the first addition of EDTA and Fe ²⁺ (both 60 μ L, 20 mM) to a solution
of BTTC-TTA COF and Fe ²⁺ , "II" indicates the second addition of EDTA and Fe ²⁺ (both 60 μ L, 20
mM) to the above solution14
Fig. S20 The fluorescence spectra of BTTC-TTA COF in DMF in the presence and absence of Fe^{3+}
ions and EDTA. "I" indicates the first addition of EDTA and Fe ³⁺ (both 60 μ L, 20 mM) to a solution
of BTTC-TTA COF and Fe ³⁺ , "II" indicates the second addition of EDTA and Fe ³⁺ (both 60 μ L, 20
mM) to the above solution14
Fig. S21 The UV-vis absorbance spectra of BTTC-TTA COFin DMF in the presence and absence
of Fe ²⁺ ions and EDTA. "I" indicates the first addition of EDTA and Fe ²⁺ (both 60 μ L, 20 mM) to
a solution of BTTC-TTA COF and Fe^{2+} , "II" indicates the second addition of EDTA and Fe^{2+} (both
60 μL, 20 mM) to the above solution15
Fig. S22 The UV-vis absorbance spectra of BTTC-TTA COF in DMF in the presence and absence
of Fe ³⁺ ions and EDTA. "I" indicates the first addition of EDTA and Fe ³⁺ (both 60 μ L, 20 mM) to
a solution of BTTC-TTA COF and Fe^{3+} , "II" indicates the second addition of EDTA and Fe^{3+} (both
$60 \ \mu L$, $20 \ mM$) to the above solution
Fig. S23 The color changes of DMF with the addition of Fe^{2+} and Fe^{3+} (30 μ L, 20 mM) under naked
eye16
Fig. S24 The color changes of BTTC-TTA COF, BTTC-TTA COF@Fe ²⁺ , BTTC-TTA COF@Fe ³⁺
in DMF in the presence and absence of EDTA under naked eye16
Fig. S25 Comparative PXRD patterns of BTTC-TTA COF, BTTC-TTA COF@Fe ²⁺ and BTTC-
TTA COF@Fe ³⁺ 16
E'= 62 Elements for the operation of DTTC TTA COE DTTC TTA
Fig. 526 Fluorescence decay curves of BITC-ITA COF, BITC-ITA COF@Fe ²⁺ , BITC-ITA
COF@Fe ³⁺
 Fig. S26 Fluorescence decay curves of BTTC-TTA COF, BTTC-TTA COF@Fe²⁺, BTTC-TTA COF@Fe²⁺ Fig. S27 Fluorescence intensity ratio (I/ I₀) of BTTC-TTA at 492 nm with the concentration of Fe²⁺

Fig. S28 Fluorescence intensity ratio (I/ I_0) of BTTC-TTA at 492 nm with the concentration of Fe ³⁺
(where I_0 and I stand for the fluorescence intensity in the absence and presence of metal
ions
Table S1 Comparison of detection limits of the reported Fe^{2+}/Fe^{3+} fluorescent sensors
Table S2 Comparison of detection limits of the reported Fe^{2+}/Fe^{3+} colorimetric sensors
Table S3. The detected iron ions concentration of real samples. 19

Fig. S2. PXRD patterns of BTTC, TTA and BTTC-TTA COF.

Fig. S3. HR-TEM image of BTTC-TTA COF.

Fig. S4. Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of different metal ions (30 μ L, 20 mM) in ethanol.

Fig. S5. Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of different metal ions (30 μ L, 20 mM) in methanol.

Fig. S6. Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of different metal ions (30 μ L, 20 mM) in water.

Fig. S7. Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of different metal ions (30 μ L, 20 mM) in CH₃CN.

Fig. S8. Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 g/L) upon the addition of different metal ions (30 μ L, 20 mM) in 1,4-dioxane.

Fig. S9. Fluorescence emission spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in DMF after the addition of different anions (30 μ L, 20 mmol/L) in DMF ($\lambda_{ex} = 350$ nm)

Fig. S10. Change in the fluorescence intensity of BTTC-TTA COF (3 mL, 0.05 g/L) with time after the addition of Fe²⁺ (30 μ L, 20 mM) in DMF (λ_{ex} = 350 nm).

Fig. S11. Change in the fluorescence intensity of BTTC-TTA COF (3 mL, 0.05 g/L) with time after the addition of Fe³⁺ (30 μ L, 20 mM) in DMF (λ_{ex} = 350 nm).

Fig. S12. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in DMF after the addition of different anions (30 μ L, 20 mmol/L).

Fig. S13. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in ethanol after the addition of different metal ions (30 μ L, 20 mmol/L).

Fig. S14. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in methanol after the addition of different metal ions (30 μ L, 20 mmol/L).

Fig. S15. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in H₂O after the addition of different metal ions (30 μ L, 20 mmol/L).

Fig. S16. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in 1,4-dioxane after the addition of different metal ions (30 μ L, 20 mmol/L).

Fig. S17. The UV-vis absorbance spectra of BTTC-TTA COF (3 mL, 0.05 mg/mL) in CH₃CN after the addition of different metal ions (30 μ L, 20 mmol/L).

Fig. S18. SEM images of (a) BTTC-TTA COF, (b) BTTC-TTA COF@ Fe^{2+} and (c) BTTC-TTA COF@ Fe^{3+} .

Fig. S19. The fluorescence spectra of BTTC-TTA COF in DMF in the presence and absence of Fe²⁺ ions and EDTA. "I" indicates the first addition of EDTA and Fe²⁺ (both 60 μ L, 20 mM) to a solution of BTTC-TTA COF and Fe²⁺, "II" indicates the second addition of EDTA and Fe²⁺ (both 60 μ L, 20 mM) to the above solution.

Fig. S20. The fluorescence spectra of BTTC-TTA COF in DMF in the presence and absence of Fe³⁺ ions and EDTA. "I" indicates the first addition of EDTA and Fe³⁺ (both 60 μ L, 20 mM) to a solution of BTTC-TTA COF and Fe³⁺, "II" indicates the second addition of EDTA and Fe³⁺ (both 60 μ L, 20 mM) to the above solution.

Fig. S21. The UV-vis absorbance spectra of BTTC-TTA COF in DMF in the presence and absence of Fe²⁺ ions and EDTA. "I" indicates the first addition of EDTA and Fe²⁺ (both 60 μ L, 20 mM) to a solution of BTTC-TTA COF and Fe²⁺, "II" indicates the second addition of EDTA and Fe²⁺ (both 60 μ L, 20 mM) to the above solution.

Fig. S22. The UV-vis absorbance spectra of BTTC-TTA COF in DMF in the presence and absence of Fe³⁺ ions and EDTA. "I" indicates the first addition of EDTA and Fe³⁺ (both 60 μ L, 20 mM) to a solution of BTTC-TTA COF and Fe³⁺, "II" indicates the second addition of EDTA and Fe³⁺ (both 60 μ L, 20 mM) to the above solution.

Fig. S23. The color changes of DMF with the addition of Fe²⁺ and Fe³⁺ (30 μ L, 20 mM) under naked eye.

Fig. S24. (a) The color of BTTC-TTA COF in DMF. (b) and (c) The color changes of BTTC-TTA $COF@Fe^{2+}$ in DMF in the absence and presence EDTA, respectively. (d) and (e) The color changes of BTTC-TTA $COF@Fe^{3+}$ in DMF in the absence and presence EDTA, respectively.

Fig. S25. Comparative PXRD patterns of BTTC-TTA COF, BTTC-TTA COF@Fe²⁺ and BTTC-TTA COF@Fe³⁺.

Fig. S26. Fluorescence decay curves of BTTC-TTA COF, BTTC-TTA COF@Fe²⁺, BTTC-TTA COF@Fe³⁺.

Fig. S27. Fluorescence intensity ratio (I/I_0) of BTTC-TTA COF at 492 nm with the concentration of Fe²⁺ (where I₀ and I stand for the fluorescence intensity in the absence and presence of metal ions.)

Fig. S28. Fluorescence intensity ratio (I/I₀) of BTTC-TTA COF at 492 nm with the concentration of Fe³⁺ (where I₀ and I stand for the fluorescence intensity in the absence and presence of metal ions.)

|--|

Fluorescent materials	LOD		Application	Reference
SS1	55.00 µM	(Fe ²⁺)	filter noner based analyses	1
	36.64 µM	(Fe^{3+})	inter paper-based analyses	
662	22.15 µM	(Fe^{2+})	filter rener based encloses	1
332	14.33 μ M (Fe ³⁺)	inter paper-based analyses	25 1	
Sensor 1	7.78 μM	(Fe^{2+})	water and living cell	h
	6.95 µM	(Fe ³⁺)	imaging	Z
COD_{α}	6.50 μM	(Fe ²⁺)	watan	2
CQDs	2.50 μ M (Fe ³⁺) water	water	3	
BTTC-TTA COF	4.51 μM	(Fe^{2+})	water, kale and bovine liver	this work
	$0.79/ 8.94 \ \mu M \ (Fe^{3+})$		samples	uns work

Table S2. Comparison of detection limits of the reported Fe^{2+}/Fe^{3+} colorimetric sensors.

Colorimetric materials	LOD	Reference	
T	43.7 μ M (Fe ²⁺)		
Terminana chedula	60.8 μM (Fe ³⁺)	4	
Probe 3	4.35 μM (Fe ²⁺)	5	
T-CDs	0.13 μM (Fe ²⁺)	6	
	2.78 μM (Fe ³⁺)	0	
MoSe ₂ @Fe	1.97 μM (Fe ³⁺)	7	
BHMN	$3.10 \ \mu M \ (Fe^{3+})$	8	
BTTC-TTA COF	2.61 µM (Fe ²⁺)	this work	
	1.56 μM (Fe ³⁺)		

Samples	Concentration/ µM
Tap water	< LOD (Fe ²⁺)
	2.54 μM (Fe ³⁺)
Drinking water	< LOD (Fe ²⁺)
	$3.23 \ \mu M \ (Fe^{3+})$
Kale extract	5.10 μM (Fe ²⁺)
	3.67 µM (Fe ³⁺)
Dessing lines and a st	7.24 μM (Fe ²⁺)
Bovine inver extract	82.46 μM (Fe ³⁺)

Table S3. The detected iron ions concentration of real samples.

References

- S. Sasan, T. Chopra, A. Gupta, D. Tsering, K. K. Kapoor and R. Parkesh, ACS Omega, 2022, 7, 11114.
- X. Gong, H. Zhang, N. Jiang, L. Wang and G. Wang, Microchem. J., 2019, 145, 435.
- 3 P. Siahcheshm and P. Heiden, J. Photochem. Photobiol. A: Chem., 2023, 435, 114284.
- 4 S. Sen, T. Singh, J. Im, D. Debnath and G. Biswas, J. Anal. Sci. Technol., 2022, 13, 39.
- 5 R. Nagarajan, E. Kamaraj, C.-H. Kim and K. H. Lee, Talanta Open, 2022, 6, 100143.
- 6 T. Jiang, J. Huang and G. Ran, Anal. Sci., 2023, 39, 325.
- 7 L. Lin, D. Chen, C. Lu and X. Wang, Microchem. J., 2022, 177, 107283.
- 8 S. Moon, M. Lee and C. Kim, Chem. Select, 2022, 7, e202201353.