Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

The study of the structure and conductive properties of an

iron gallate MOF: $[Fe^{III}(C_7H_4O_5)]_n \cdot 2nH_2O$

Andrey V. Sokolov,^a Yelizaveta A. Morkhova,^{*b,c} Maxim N. Kachalkin,^a Alexander A. Shindrov^{d,e} ^a Samara State Medical University, 443099, Samara, Russia.

^b Samara State Technical University, 443100 Samara, Russia *eliztimofeeva@mail.ru

^c Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic,

Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences,

184209, Apatity, Russia

^d Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian

Academy of Sciences, 630090 Novosibirsk, Russia

^e Novosibirsk State University, 630090 Novosibirsk, Russia

Supplementary Information

Fig. S1. Schematic diagram of measurement setup (above) and an electrochemical cell (below).

Fig. S2. Impedance measurement setup.

Fig. S4. Pores in iron (III) gallate with volume indicated.

Fig. S5. Formation of hydrogen bonds between guest water molecules and the MOF framework. Hop length between migrating protons.

Fig. S6. PXRD spectra of the pristine iron (III) gallate and sample immediately after electrochemical impedance measurements.

Table S1. Atomic coordinates in iron (III) gallate after Rietveld refinement. The occupancy of all

atoms is 1.			
Atom	х	У	Z
Fe	0	0.9351	0.1667
01	0.8144	0.6756	0.1476
02	0.1708	0.2827	0.1774
03	0.8365	0.8365	0
04	0.8382	0.3192	0.0702
C1	0.7127	0.7127	0
C2	0.5193	0.4723	0.1067
C3	0.2754	0.2754	0
C4	0.6834	0.6287	0.1059
C5	0.4394	0.4394	0