Supporting Information

Diastereoselective reaction to construct polycyclic spiroindolines from 3-(2-isocyanoethyl)indoles and ynones

Demin Liang, a Da Wu, Jie Shen, Shanya Lu, Jiale Wang, Xiaodong Yan, and Jian Li*b

- ^{a.} Technical Center of Shanghai Tobacco Group Co. Ltd., 3733 Xiupu Road, Shanghai 200082, P. R. China. E-mail: yanxd@sh.tobacco.com.cn
- ^{b.} Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China. E-mail: lijian@shu.edu.cn.

Table of contents

1. General Information	S2
2. General Procedures	S2
3. Product Characterization	S5
4. Copies of ¹ H NMR and ¹³ C NMR of All Compounds	S24

1. General Information

The NMR spectra were recorded on Bruker AC-500 spectrometer (500 MHz for ¹H NMR, 125 MHz for ¹³C NMR) and JEOL ECX- 400 spectrometer (400 MHz for ¹H NMR and 101 MHz for ¹³C NMR) with CDCl₃ as the solvent and TMS as internal reference. ¹H NMR spectral data were reported as follows: chemical shift (δ, ppm), multiplicity, integration, and coupling constant (Hz). ¹³C NMR spectral data were reported in terms of the chemical shift. The following abbreviations were used to indicate multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet. Low-resolution mass spectra were obtained on a Shimadzu LCMS-2010EV spectrometer in ESI mode and reported as m/z. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument. Melting points were obtained on an X-4 digital melting point apparatus without correction. Purification of products was accomplished by column chromatography packed with silica gel. Unless otherwise stated, all reagents were commercially purchased and used without further purification.

2. General procedures

2.1 General procedure for the synthesis of spiroindoline 3.

Under air atmosphere, a sealable reaction tube equipped with a magnetic stir bar was charged with 3-(2-isocyanoethyl)-1H-indole **1a** (0.2 mmol), ynone **2** (0.2 mmol) and 0.2 mmol Cs₂CO₃ in 2.0 mL CHCl₃ at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 120 °C for 12 hours. After completion of the reaction, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford the desired product.

2.2 General procedure for the synthesis of spiroindoline 4.

Under air atmosphere, a sealable reaction tube equipped with a magnetic stir bar was charged with tryptamine-derived isocyanide **1** (0.2 mmol), ynone **2** (0.2 mmol) and 0.2 mmol Cs₂CO₃ in 2.0 mL CHCl₃ at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 120 °C for 12 hours. After completion of the reaction, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford the desired product.

2.3 General procedure for the control experiments.

2.3.1 Reaction with dialkyl- and alkyl-aryl-substituted ynone.

Under air atmosphere, a sealable reaction tube equipped with a magnetic stir bar was charged with 3-(2-isocyanoethyl)-1H-indole **1a** (0.2 mmol), ynone **2** (0.2 mmol) and 0.2 mmol Cs₂CO₃ in 2.0 mL CHCl₃ at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 120 °C for 12 hours. After completion of the reaction, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford the desired product.

2.3.2 Reaction with methyl heptine carbonate.

Under air atmosphere, a sealable reaction tube equipped with a magnetic stir bar was charged with 3-(2-isocyanoethyl)-1H-indole **1a** (0.2 mmol), methyl heptine carbonate **5** (0.2 mmol) and 0.2 mmol Cs₂CO₃ in 2.0 mL CHCl₃ at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 120 °C for 12 hours. The analysis of TLC showed that no reaction occurred.

2.3.3 Reaction with allenic ketone.

Under air atmosphere, a sealable reaction tube equipped with a magnetic stir bar was charged with 3-(2-isocyanoethyl)-1H-indole **1a** (0.2 mmol), allenic ketone **6** (0.2 mmol) and 0.2 mmol Cs₂CO₃ in 2.0 mL CHCl₃ at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 120 °C for 12 hours. The analysis of TLC showed that no reaction occurred.

2.3.4 Reaction with cyclocitral-derived malononitrile.

Under air atmosphere, a sealable reaction tube equipped with a magnetic stir bar was charged with 3-(2-isocyanoethyl)-1H-indole **1a** (0.2 mmol), cyclocitral-derived malononitrile **7** (0.2 mmol) and 0.2 mmol Cs₂CO₃ in 2.0 mL CHCl₃ at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 120 °C for 12 hours. After the completion of the reaction, the organic solvent was removed under vacuum and the residue was purified by column chromatography to afford **8** (64% yield) as yellow oil.

2.3.5 Reaction with megastigmatrienone.

Under air atmosphere, a sealable reaction tube equipped with a magnetic stir bar was charged with 3-(2-isocyanoethyl)-1H-indole **1a** (0.2 mmol), megastigmatrienone (0.2 mmol) and 0.2 mmol Cs₂CO₃ in 2.0 mL CHCl₃ at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 120 °C for 12 hours. The analysis of TLC showed that no reaction occurred.

3. Product Characterization

Spectroscopic Data of All Compounds

(3a): 60 mg, 80% yield, yellow solid. m.p. 48-50 °C. 1 H NMR (400 MHz, Chloroform-d) δ 7.55 (d, J = 7.8 Hz, 2H), 7.39-7.32

(m, 3H), 7.23 (d, J = 7.5 Hz, 1H), 7.20-7.09 (m, 6H), 6.83 (t, J

= 7.5 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 4.92 (s, 1H), 4.76-4.64

(m, 1H), 4.55-4.45 (m, 1H), 4.40 (s, 1H), 2.42-2.34 (m, 2H). 13 C NMR (101 MHz, Chloroform-*d*) δ 197.13, 187.13, 152.55, 148.21, 140.35, 136.31, 133.77, 132.13, 130.66, 129.40, 129.36, 129.18, 128.55, 128.31, 123.61, 120.13, 111.17, 68.74, 68.19, 66.80, 38.52. HRMS (ESI): Calcd. for $C_{26}H_{21}N_{2}O$ [M+H]⁺: 377.1654, Found: 377.1658.

(**3b**): 57 mg, 70% yield, yellow solid. m.p. 180-182 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.57-7.52 (m, 2H), 7.44-7.39 (m, 1H), 7.33-7.29 (m, 2H), 7.23-7.18 (m, 3H), 7.14-

7.10 (m, 1H), 7.10-7.06 (m, 2H), 6.82 (td, J = 7.5, 1.0 Hz,

1H), 6.63 (dt, J = 7.9, 0.8 Hz, 1H), 4.89 (s, 1H), 4.72-4.62 (m, 1H), 4.48 (m, 1H), 4.39 (s, 1H), 2.42-2.31 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.87, 186.83, 153.10, 148.13, 138.70, 136.09, 135.36, 134.10, 132.00, 130.64, 129.34, 129.28, 129.17, 128.74, 128.59, 123.57, 120.24, 111.26, 68.77, 68.27, 66.80, 38.52. HRMS (ESI): Calcd. for C₂₆H₂₀ClN₂O [M+H]⁺: 411.1264, Found: 411.1260.

N Ph Ph O

(3c): 39 mg, 43% yield, red solid. m.p. 189-191 °C. ¹H NMR (400 MHz, DMSO-d6) δ 7.56-7.52 (m, 2H), 7.49-7.45 (m, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.25 (dd, J = 7.3, 2.4 Hz, 2H), 7.16 (dd, J = 3.7, 2.0 Hz, 3H), 7.14 (d, J = 1.6

Hz, 1H), 7.04 (dd, J = 8.4, 2.2 Hz, 1H), 6.49 (d, J = 8.2 Hz, 2H), 4.98 (d, J = 2.1 Hz, 1H), 4.63 (m, 1H), 4.26 (dd, J = 15.9, 8.3 Hz, 1H), 2.46 (d, J = 1.9 Hz, 2H), 2.39-2.29 (m, 1H), 2.10 (dd, J = 12.4, 5.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ 196.47, 185.83, 154.40, 148.32, 138.45, 136.43, 134.54, 134.14, 130.95, 129.68, 129.36, 129.27, 129.14, 128.78, 123.61, 121.82, 111.54, 68.98, 68.50, 66.39, 38.48. HRMS (ESI): Calcd. for C₂₆H₂₀BrN₂O [M+H]⁺: 455.0759, Found: 455.0769.

N H Ph

(3d): 44 mg, 57% yield, viscious oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.57 (d, J = 8.9 Hz, 2H), 7.40-7.36 (m, 1H), 7.27-7.18 (m, 5H), 7.11 (t, J = 7.7 Hz, 1H), 6.91 (d, J = 7.8 Hz, 2H), 6.82 (t, J = 7.4 Hz, 1H),

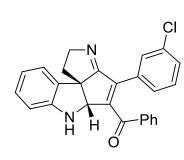
6.63 (d, J = 7.7 Hz, 1H), 4.90 (s, 1H), 4.75-4.62 (m, 1H), 4.55-4.44 (m, 1H), 4.39 (s, 1H), 2.39-2.33 (m, 2H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.31, 187.23, 151.64, 148.26, 140.17, 139.45, 136.40, 133.71, 132.22, 129.38, 129.12, 129.02, 128.57, 127.73, 123.61, 120.06, 111.13, 68.74, 68.13, 66.75, 38.51, 21.35. HRMS (ESI): Calcd. for $C_{27}H_{23}N_2O$ [M+H]⁺: 391.1810, Found: 391.1801.

N H O Ph

(3e): 62 mg, 75% yield, red solid. m.p. 161-163 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (dd, J = 8.4, 1.3 Hz, 2H), 7.39-7.34 (m, 1H), 7.29-7.26 (m, 2H), 7.23 (d, J = 6.8 Hz, 1H), 7.20-7.16 (m, 2H), 7.11 (td, J = 7.7, 1.3

Hz, 1H), 6.93 (d, J = 8.1 Hz, 2H), 6.82 (td, J = 7.5, 1.0 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 4.90 (s, 1H), 4.73-4.63 (m, 1H), 4.53-4.39 (m, 2H), 2.46 (q, J = 7.6 Hz, 2H), 2.39-2.33 (m, 2H), 1.06 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.30, 187.29, 151.71, 148.28, 145.75, 140.30, 136.43, 133.67, 132.20, 129.49, 129.39, 129.13, 128.55, 127.94, 127.85, 123.61, 120.04, 111.12, 68.75, 68.12, 66.75, 38.51, 28.71, 15.40. HRMS (ESI): Calcd. for $C_{28}H_{25}N_2O$ [M+H]⁺: 405.1967, Found: 405.1975.

N H Ph


(3f): 45 mg, 52% yield, viscious oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49-7.45 (m, 2H), 7.40-7.36 (m, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.14-7.09 (m, 4H), 6.98 (d, J = 7.2 Hz, 2H), 6.82 (t, J = 7.8 Hz, 1H), 6.62

(d, J = 7.5 Hz, 1H), 4.88 (s, 1H), 4.77-4.60 (m, 1H), 4.55-4.44 (m, 1H), 4.35 (s, 1H), 2.38-2.33 (m, 2H), 2.26 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.27, 187.30, 152.49, 151.72, 148.25, 140.37, 136.47, 133.59, 132.18, 129.42, 129.20, 129.12, 128.53, 127.64, 125.25, 123.61, 122.75, 122.40, 120.05, 119.75, 118.24, 111.53, 111.10, 68.74, 68.07, 66.76, 38.48, 34.64, 31.07. HRMS (ESI): Calcd. for C₃₀H₂₉N₂O [M+H]⁺: 433.2280, Found: 433.2280.

(3g): 32 mg, 39% yield, red solid. m.p. 175-176 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.58-7.53 (m, 2H), 7.40-7.35 (m, 1H), 7.32 (d, J = 2.1 Hz, 1H), 7.30 (d, J = 2.1 Hz, 1H), 7.19 (qd, J = 7.2, 6.7, 1.4

Hz, 3H), 7.10 (td, J = 7.7, 1.2 Hz, 1H), 6.80 (td, J = 7.5, 1.0 Hz, 1H), 6.65-6.59 (m, 3H), 4.88 (s, 1H), 4.72-4.62 (m, 1H), 4.47 (m, 1H), 4.39 (s, 1H), 3.66 (s, 3H), 2.39-2.30 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.40, 187.37, 160.38, 150.63, 148.30, 139.84, 136.42, 133.73, 132.20, 131.09, 129.37, 129.12, 128.60, 123.59, 123.10, 120.02, 113.77, 111.12, 68.69, 68.04, 66.74, 55.27, 38.51. HRMS (ESI): Calcd. for $C_{27}H_{23}N_2O_2$ [M+H]⁺: 407.1760, Found: 407.1771.

(**3h**): 49 mg, 60% yield, 120-121 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 7.8 Hz, 2H), 7.43-7.38 (m, 2H), 7.24-7.08 (m, 6H), 7.02 (t, J = 7.8 Hz, 1H), 6.84 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 4.92 (s, 1H),

4.75-4.62 (m, 1H), 4.53-4.46 (m, 1H), 4.43 (s, 1H), 2.43-2.33 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.73, 186.60, 153.78, 148.11, 138.77, 136.22, 134.27, 133.99, 132.44, 131.95, 129.53, 129.35, 129.30, 129.25, 128.68, 127.46, 123.60, 120.27, 111.24, 68.75, 68.28, 66.85, 38.53. HRMS (ESI): Calcd. for C₂₆H₂₀ClN₂O [M+H]⁺: 411.1264, Found: 411.1269.

(3i): 42 mg, 54% yield, yellow solid. m.p. 45-46 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53-7.50 (m, 2H), 7.35 (t, 1H), 7.23 (d, J = 6.5 Hz, 1H), 7.18-7.11 (m, 5H), 6.91 (d, J = 7.6 Hz, 2H), 6.81 (t, J = 7.6 Hz, 1H), 6.63 (d, J = 6.8 Hz,

1H), 4.91 (s, 1H), 4.75-4.62 (m, 1H), 4.53-4.43 (m, 1H), 4.40 (s, 1H), 2.39-2.34 (m, 2H), 2.11 (s, 3H). 13 C NMR (101 MHz, Chloroform-d) δ 197.33, 187.24, 151.62, 148.25, 140.18, 139.46, 136.38, 133.73, 132.21, 129.39, 129.13, 129.03, 128.58, 127.71, 123.62, 120.06, 111.14, 68.73, 68.11, 66.76, 38.52, 21.37. HRMS (ESI): Calcd. for $C_{27}H_{23}N_2O$ [M+H]+: 391.1810, Found: 391.1815. HRMS (ESI): Calcd. for $C_{27}H_{23}N_2O$ [M+H]+: 391.1810, Found: 391.1803.

(**3j**): 47 mg, 60% yield, viscious oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50-7.46 (m, 2H), 7.41-7.37 (m, 2H), 7.23 (d, *J* = 7.4 Hz, 1H), 7.15-7.10 (m, 4H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.83 (t, *J* = 7.5

Hz, 1H), 6.63 (d, J = 7.8 Hz, 1H), 4.89 (s, 1H), 4.78-4.61 (m, 1H), 4.57-4.45 (m, 1H), 4.36 (s, 1H), 2.40-2.34 (m, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.67, 187.12, 152.94, 148.23, 145.03, 139.42, 133.76, 132.18, 130.74, 129.57, 129.37, 129.31, 129.24, 129.15, 128.34, 123.60, 120.10, 111.15, 68.77, 68.19, 66.78, 38.44, 21.81. HRMS (ESI): Calcd. for $C_{27}H_{23}N_2O$ [M+H]⁺: 391.1810, Found: 391.1822.

(3k): 65 mg, 72% yield, 135-136 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 8.6 Hz, 2H), 7.34-7.28 (m, 4H), 7.24 (d, J = 7.6 Hz, 1H), 7.17-7.11 (m, 4H), 6.84 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 7.4 Hz, 1H), 6.84 (d, J = 7.4 Hz, 1H),

7.9 Hz, 1H), 4.93 (s, 1H), 4.76-4.63 (m, 1H), 4.55-4.44 (m, 1H), 4.39 (s, 1H), 2.41-2.33 (m, 2H). 13 C NMR (101 MHz, Chloroform-d) δ 196.18, 186.97, 152.08, 148.08, 140.60, 135.13, 132.21, 131.89, 130.73, 130.44, 129.63, 129.40, 129.26, 129.10, 128.48, 123.64, 120.33, 111.35, 68.78, 68.36, 66.82, 38.55. HRMS (ESI): Calcd. for $C_{26}H_{20}BrN_2O$ [M+H] $^+$: 455.0759, Found: 455.0769.

(31): 61 mg, 75% yield, yellow solid: 58-60 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19-7.11 (m, 4H), 7.09-7.02 (m, 6H), 6.95 -6.89 (m, 1H), 6.78 (t, J = 7.4 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 4.97 (s, 1H), 4.71 (s, 1H), 4.69-4.58 (m,

1H), 4.52-4.41 (m, 1H), 2.44-2.33 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.44, 187.74, 151.74, 148.68, 145.50, 137.63, 132.15, 132.08, 131.36, 130.49, 130.45, 130.21, 129.32, 129.19, 127.84, 126.38, 123.62, 119.70, 110.64, 67.94, 67.44, 66.81, 38.70. HRMS (ESI): Calcd. for C₂₆H₂₀ClN₂O [M+H]⁺: 411.1264, Found: 411.1270.

(3m): 65 mg, 72% yield, yellow solid. m.p. 180-181 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25-7.21 (m, 1H), 7.17-7.10 (m, 4H), 7.06 -6.93 (m, 6H), 6.77 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 4.96 (s, 1H), 4.71 (s, 1H), 4.67-

4.57 (m, 1H), 4.52-4.40 (m, 1H), 2.42-2.32 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 195.99, 187.82, 151.29, 148.78, 145.92, 139.39, 133.50, 132.09, 131.29, 130.63, 130.45, 129.32, 129.20, 127.82, 126.91, 123.63, 120.44, 119.67, 110.60, 67.97, 67.32, 66.81, 38.74. HRMS (ESI): Calcd. for C₂₆H₂₀BrN₂O [M+H]⁺: 455.0759, Found: 455.0760.

(3n) 80 mg, 82% yield, red solid. m.p. 195-197 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (d, J = 7.7 Hz, 1H), 7.18-7.11 (m, 2H), 7.03 (m, 7H), 6.78 (t, J = 7.4 Hz, 1H), 6.68 (d, J = 7.9 Hz, 1H), 4.97 (s, 1H), 4.75 (s, 1H), 4.67-4.57 (m, 1H), 4.46 (dd, J = 16.1, 7.4 Hz, 1H),

2.44 -2.32 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.68, 187.40, 152.04, 148.71, 144.40, 139.31, 133.78, 133.48, 132.31, 132.20, 131.03, 130.47, 129.30, 129.13, 127.28, 127.11, 123.62, 120.19, 119.76, 110.62, 67.88, 67.28, 66.87, 38.77. HRMS (ESI): Calcd. for C₂₆H₁₉BrC₁N₂O [M+H]⁺: 489.0369, Found: 489.0358.

(3o): 17 mg, 22% yield, red solid. m.p. 156-157 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.52 (d, J = 5.2 Hz, 1H), 7.45 (dd, J = 6.7, 3.0 Hz, 2H), 7.23-7.16 (m, 4H),

7.10 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 3.8 Hz, 1H), 6.80 (t, J = 7.4 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H), 6 4.4 Hz, 1H), 6.63 (d, J = 7.9 Hz, 1H), 4.88 (s, 1H), 4.73 - 4.57 (m, 1H), 4.47 (m, 2H), 2.35 (dd, J = 9.3, 5.9 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 188.62, 186.96, 152.67, 148.14, 143.31, 139.60, 135.65, 135.50, 132.10, 130.85, 129.41, 129.28, 129.16, 128.50, 128.39, 123.56, 120.13, 111.20, 68.60, 68.34, 66.78, 38.39. HRMS (ESI): Calcd. for C₂₄H₁₉N₂OS [M+H]⁺: 383.1218, Found: 383.1220.

(3p): 22 mg, 36% yield, viscious oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13-7.09 (m, 1H), 7.03 (d, J = 7.4 Hz, 1H), 6.78-6.72 (m, 2H), 4.56-4.32 (m, 3H), 4.20 (brs, 1H), 2.79-2.62 (m, 2H), 2.19-2.15 (m, 2H), 1.20 (s, 9H), 1.14 (t, J = 7.6 Hz, 3H). 13 C NMR (101) MHz, Chloroform-*d*) δ 207.80, 186.94, 152.77, 147.78, 144.32, 132.89, 128.87, 123.08, 120.44, 111.88, 68.56, 67.85, 66.36, 38.53, 37.79, 33.69, 29.31, 7.35. HRMS (ESI): Calcd. for $C_{20}H_{25}N_2O$ [M+H]⁺: 309.1967, Found: 309.1960.

(4a): 62 mg, 75% yield, red solid. m.p. 200-202 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56-7.53 (m, 2H), 7.43-7.32 (m, 4H), 7.30 (d, J = 2.0 Hz, 1H),

7.23-7.18 (m, 3H), 7.14-7.10 (m, 3H), 6.51 (d, J = 8.3 Hz, 1H), 4.93 (s, 1H), 4.72-4.60 (m, 1H), 4.56-4.43 (m, 2H), 2.40-2.34 (m, 2H). 13 C NMR (101 MHz, Chloroform-d) δ 196.86, 186.43, 152.08, 147.33, 140.60, 136.18, 134.16, 133.88, 131.99, 130.43, 129.53, 129.47, 129.33, 128.61, 128.36, 126.64, 112.39, 111.41, 68.97, 68.04, 66.79, 38.46. HRMS (ESI): Calcd. for $C_{26}H_{20}$ ClN₂O [M+H]⁺: 411.1264, Found: 411.1265.

(**4b**): 52mg, 58% yield, red solid. m.p. 185-187 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59-7.51 (m, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.32 (d, J = 8.5 Hz, 1H), 7.23 (t, J = 7.8 Hz, 2H), 7.15 (d, J = 2.1 Hz,

1H), 7.12-7.06 (m, 5H), 6.56 (d, J = 8.4 Hz, 1H), 4.92 (s, 1H), 4.72-4.59 (m, 1H), 4.50 (m, 1H), 4.42 (s, 1H), 2.43-2.31 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.62, 186.12, 152.67, 146.78, 138.91, 135.95, 135.57, 134.21, 133.59, 130.69, 129.31, 129.25, 128.93, 128.80, 128.65, 124.58, 123.81, 112.01, 69.10, 68.18, 66.81, 38.41. HRMS (ESI): Calcd. for $C_{26}H_{19}Cl_2N_2O$ [M+H]⁺: 445.0874, Found: 445.0879.

(**4c**): 48 mg, 46% yield, red solid. m.p. 172-174 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57-7.52 (m, 2H), 7.40-7.33 (m, 3H), 7.30 (d, J = 2.0 Hz, 1H), 7.22-7.16 (m, 3H), 7.14-7.08 (m, 3H), 6.51 (d, J = 8.3 Hz, 1H), 4.93 (s,

1H), 4.71-4.60 (m, 1H), 4.54-4.42 (m, 2H), 2.42-2.33 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.85, 186.41, 152.03, 147.32, 140.62, 136.18, 134.16, 133.87, 131.99, 130.43, 129.53, 129.46, 129.33, 128.61, 128.36, 126.65, 112.39, 111.42, 68.97, 68.03, 66.80, 38.47. HRMS (ESI): Calcd. for C₂₆H₂₀BrN₂O [M+H]⁺: 455.0759, Found: 455.0763.

(**4d**): 45 mg, 56% yield, red solid. m.p. 140-141 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58-7.49 (m, 2H), 7.40-7.29 (m, 3H), 7.21-7.07 (m, 5H), 7.09 (dd, *J* = 5.4, 3.6 Hz, 4H), 6.81 (d, *J* = 2.6 Hz, 1H),

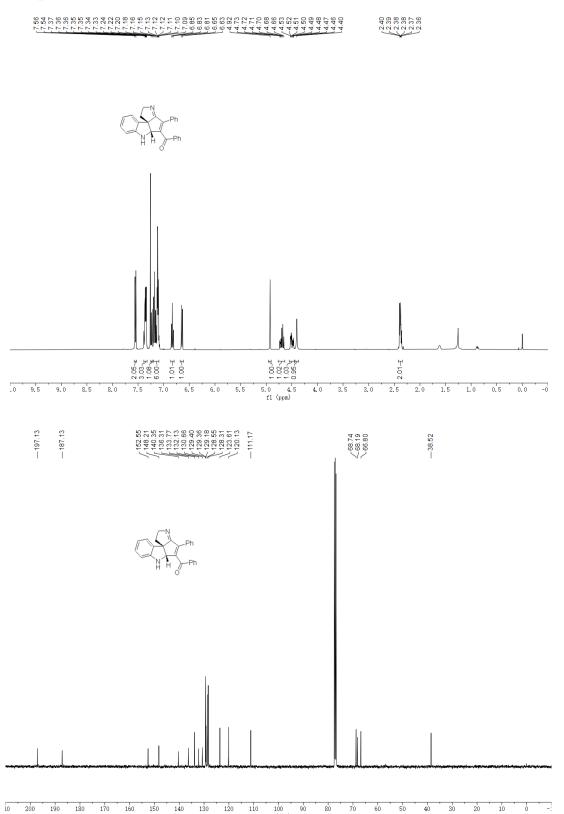
6.70 (dd, J = 8.5, 2.5 Hz, 1H), 6.59 (d, J = 8.5 Hz, 1H), 4.91 (s, 1H), 4.66 (m, 1H), 4.47 (m, 1H), 4.23-4.04 (m, 1H), 3.77 (s, 3H), 2.42-2.29 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.21, 186.97, 154.58, 153.31, 142.10, 139.80, 136.35, 134.22, 133.75, 130.64, 129.36, 129.30, 128.52, 128.31, 114.35, 112.59, 109.81, 69.63, 69.03, 66.79, 55.97, 38.08. HRMS (ESI): Calcd. for $C_{27}H_{23}N_2O_2$ [M+H]⁺: 407.1760, Found: 407.1770.

(4e): 56 mg, 64% yield, red solid. m.p. 142-143
°C .¹H NMR (400 MHz, Chloroform-d) δ 7.55 (dd, J=8.2, 1.3 Hz, 2H), 7.37-7.32 (m, 1H), 7.28 (s, 1H), 7.26 (s, 1H), 7.17 (t, J=7.8 Hz, 2H), 6.92 (d, J=8.2)

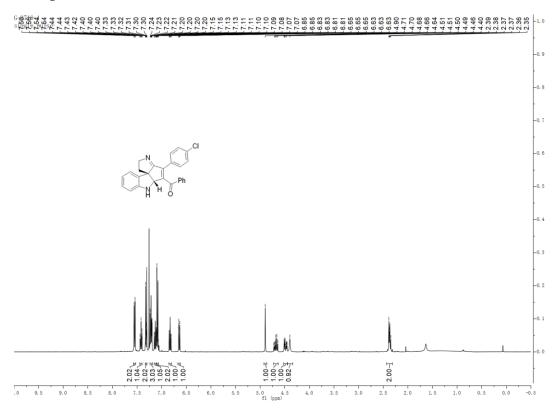
Hz, 2H), 6.81 (d, J = 2.5 Hz, 1H), 6.69 (dd, J = 8.5, 2.6 Hz, 1H), 6.57 (d, J = 8.5 Hz, 1H), 4.89 (s, 1H), 4.66 (m, 1H), 4.46 (dd, J = 14.9, 6.5 Hz, 1H), 4.17 (s, 1H), 3.76 (s, 3H), 2.45 (q, J = 7.6 Hz, 2H), 2.33 (t, J = 8.1 Hz, 2H), 1.05 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.40, 187.13, 154.52, 152.45, 145.71, 142.17, 139.73, 136.45, 134.29, 133.66, 129.44, 128.53, 127.87, 114.31, 112.54, 109.83, 69.63, 68.95, 66.75, 55.97, 38.07, 28.70, 15.39.

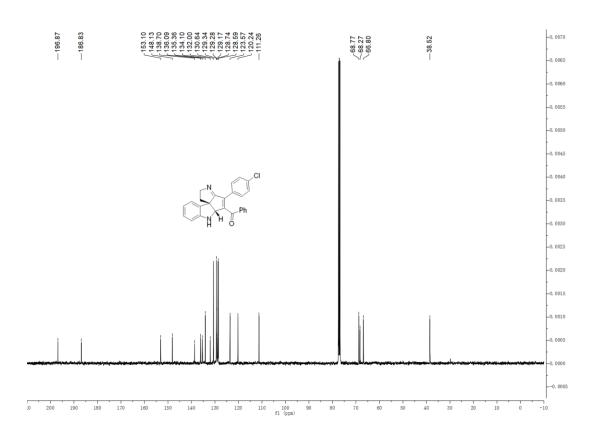
Me N H O Ph

(**4f**): 41 mg, 53% yield, red solid. m.p. 153-155 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (dd, J = 8.3, 1.4 Hz, 2H), 7.38-7.32 (m, 3H), 7.19-7.15 (m, 2H), 7.12-

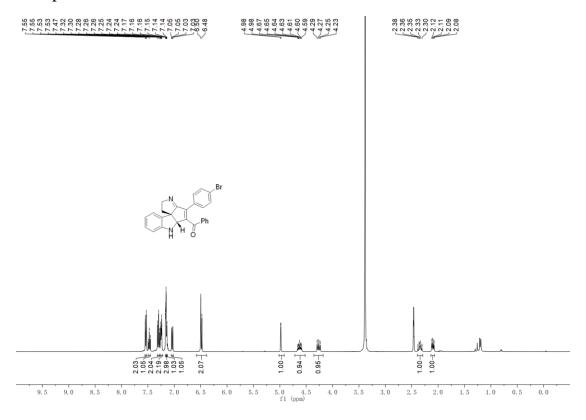

7.07 (m, 4H), 6.63 (d, J = 7.0 Hz, 1H), 6.45 (s, 1H), 4.90 (s, 1H), 4.66 (dt, J = 15.9, 8.1 Hz, 1H), 4.46 (dt, J = 15.8, 5.0 Hz, 1H), 4.37 (s, 1H), 2.37-2.31 (m, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.13, 187.31, 152.62, 148.51, 140.25, 139.23, 136.33, 133.74, 130.75, 129.42, 129.40, 129.35, 129.29, 128.54, 128.28, 123.26, 120.91, 111.85, 68.98, 67.91, 66.68, 38.60, 21.66. HRMS (ESI): Calcd. for C₂₇H₂₃N₂O [M+H]⁺: 391.1810, Found: 391.1809.

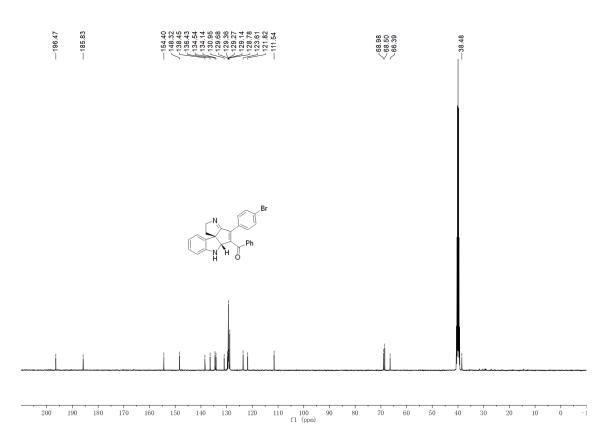
(8): 47 mg, 64% yield, viscious oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (m, 2H), 6.86 (td, J = 7.5, 1.0 Hz, 1H), 6.82 (dd, J = 8.1, 1.0 Hz, 1H), 4.79 (s, 1H), 4.65 (s, 1H), 3.91 (td, J = 10.5, 5.8 Hz, 2H), 3.81-3.74 (m, 1H), 2.26-2.17 (m, 1H), 2.12 (m, 1H), 2.08 – 2.01 (m, 2H), 1.79-1.69 (m, 1H), 1.66 (s, 3H), 1.65-1.61 (m, 1H), 1.53 (m, 1H), 1.41 (dd, J = 12.2, 3.2 Hz, 1H), 1.12 (s, 3H), 0.89 (s, 3H). ¹³C NMR

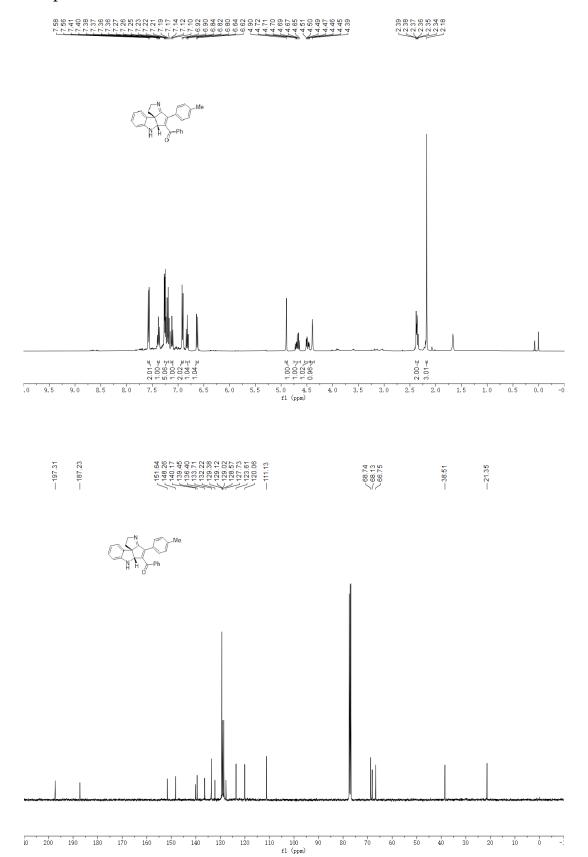

(101 MHz, Chloroform-d) δ 159.07, 147.60, 135.87, 131.89, 129.78, 129.56, 122.51, 120.76, 115.79, 114.58, 110.62, 92.01, 77.68, 63.78, 57.03, 48.89, 39.88, 37.87, 34.94, 32.33, 29.48, 28.72, 21.40, 18.86. HRMS (ESI): Calcd. for C₂₄H₂₇N₄ [M+H]⁺: 371.2236, Found: 371.2239.


4. ¹H NMR and ¹³C NMR Spectra of All Compounds

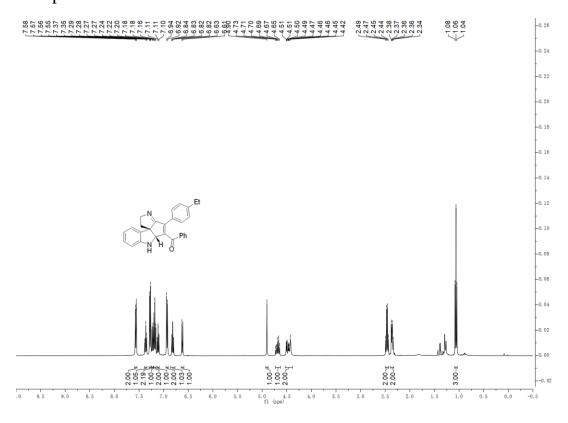
Compound 3a

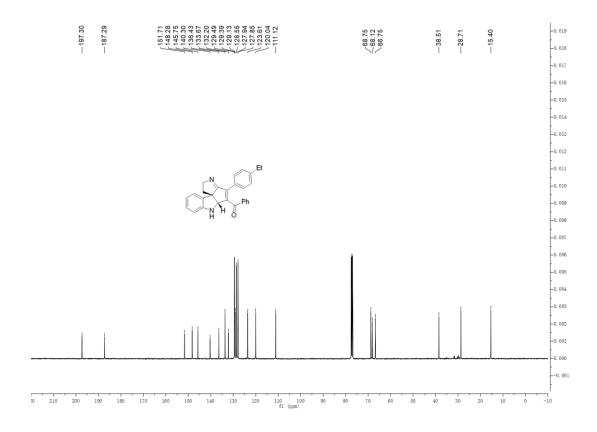



Compound 3b

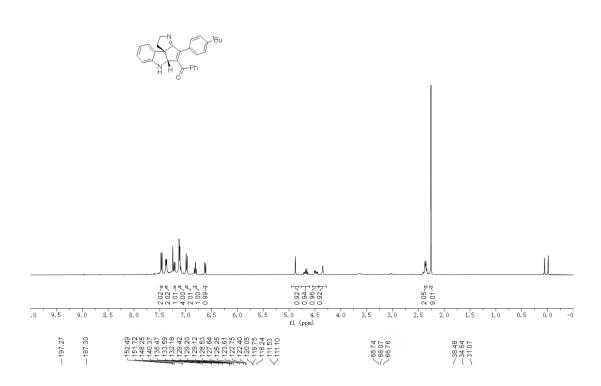


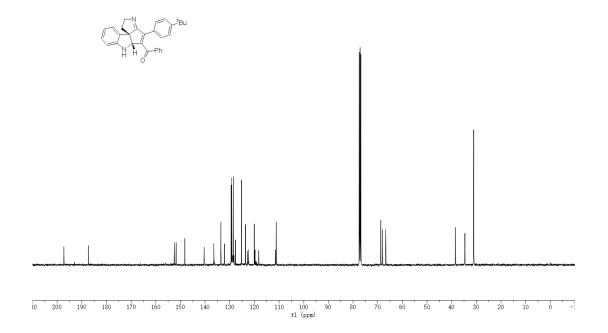
Compound 3c

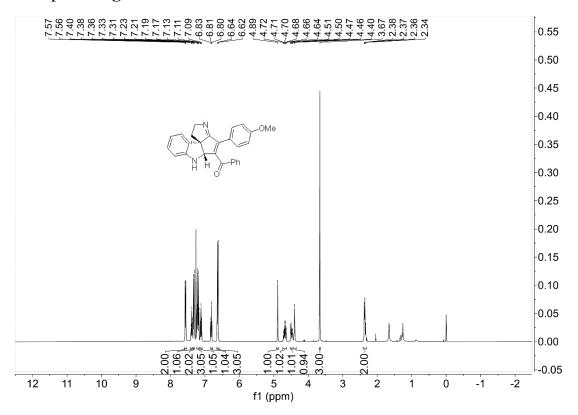


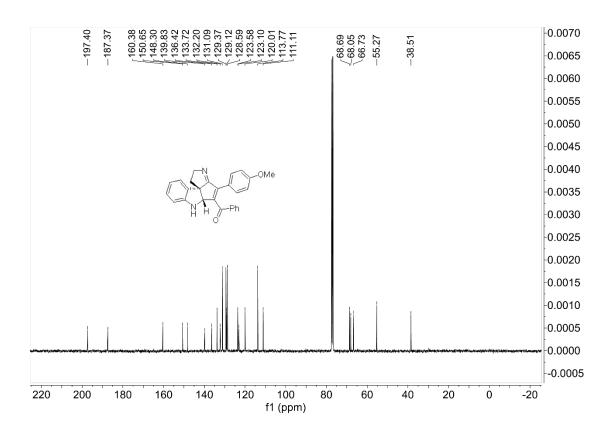


Compound 3d

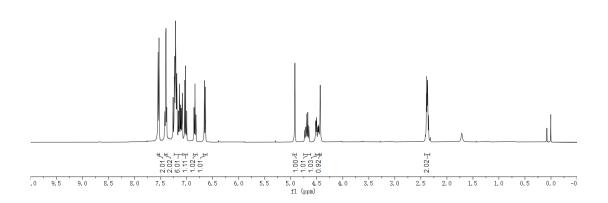

Compound 3e

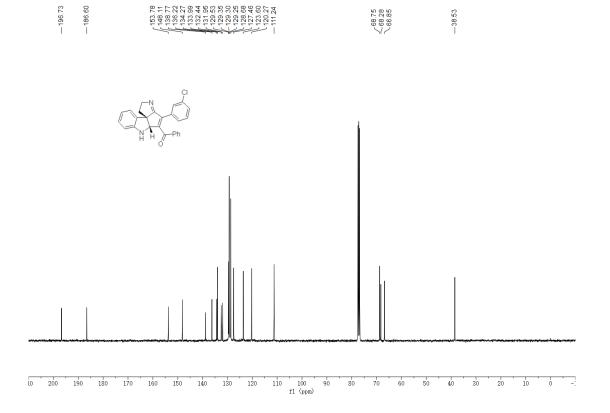



Compound **3f**

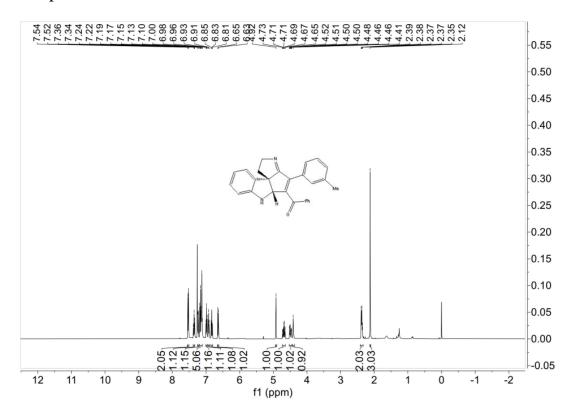


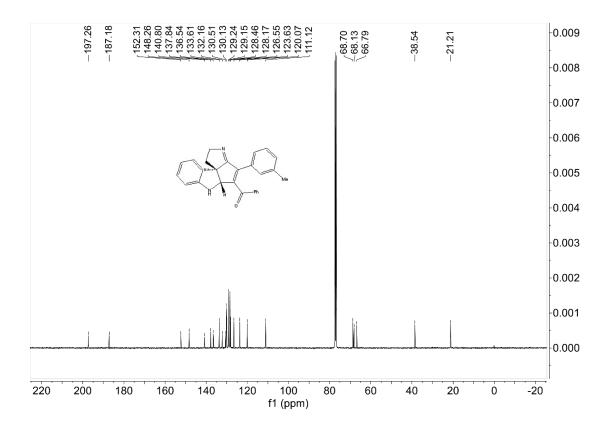
Compound 3g

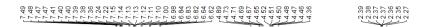


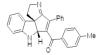


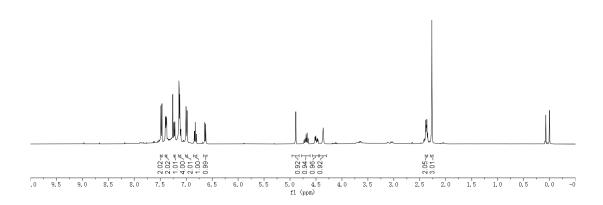
Compound 3h

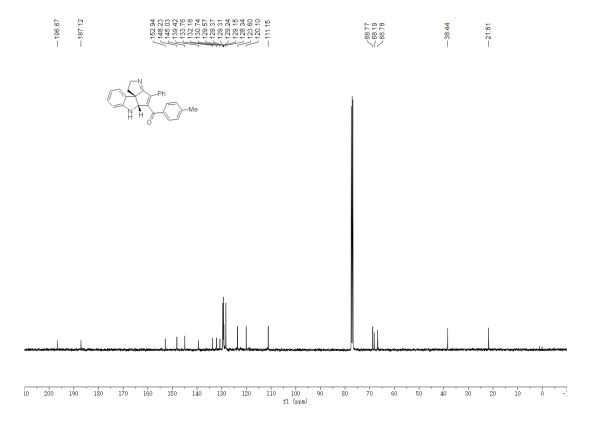




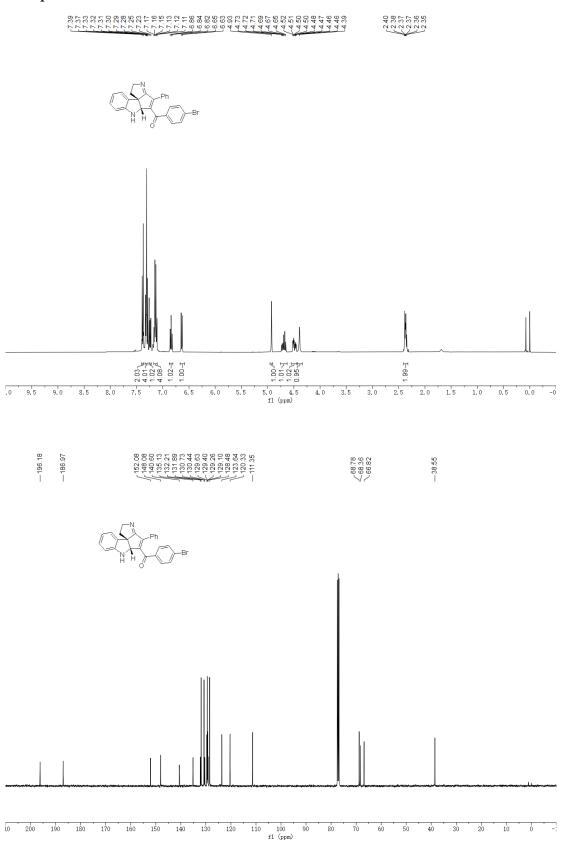


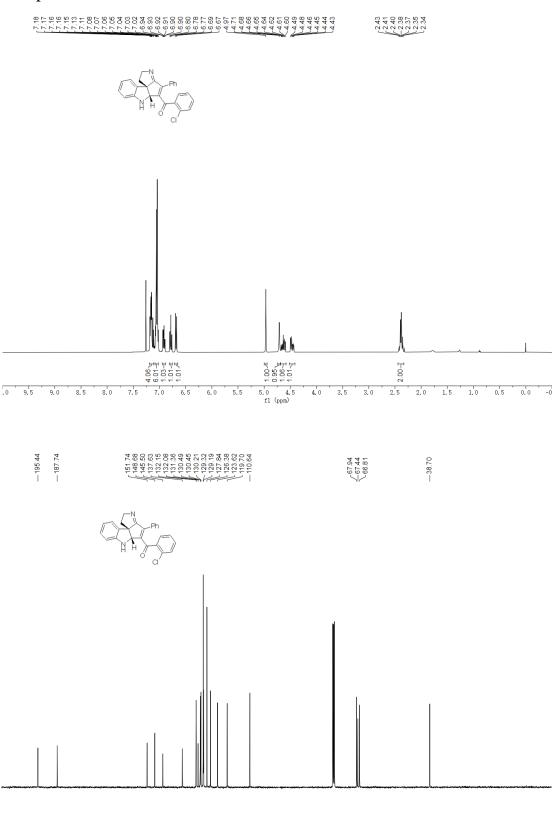

Compound 3i



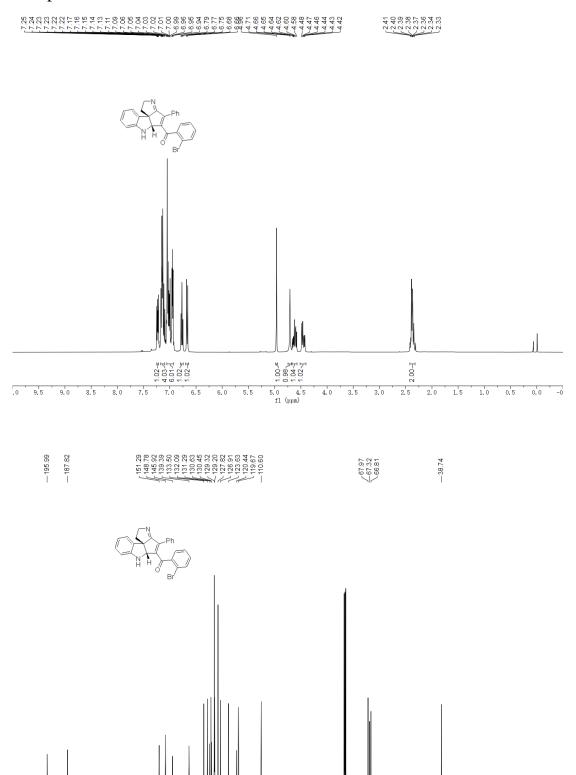


Compound 3j

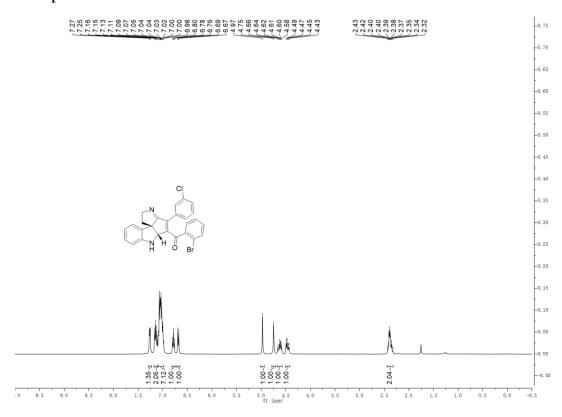




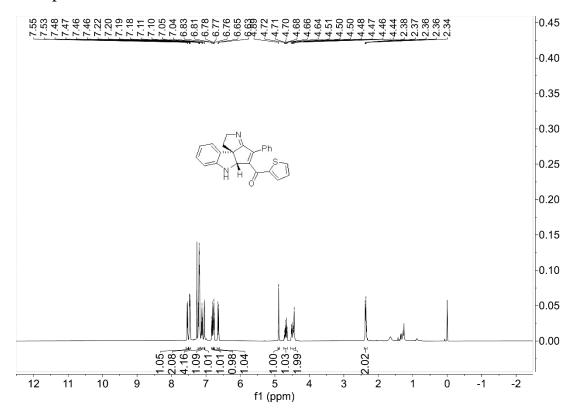
Compound 3k

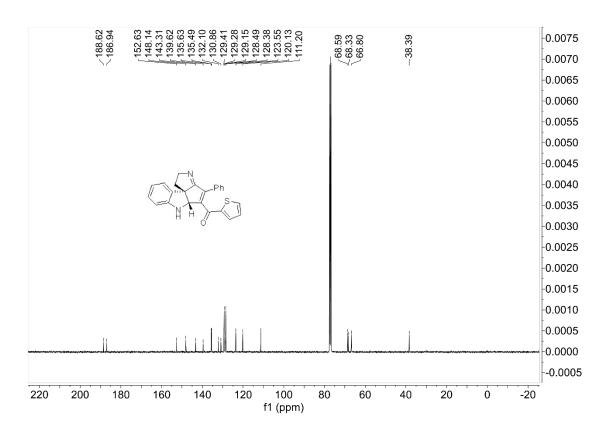


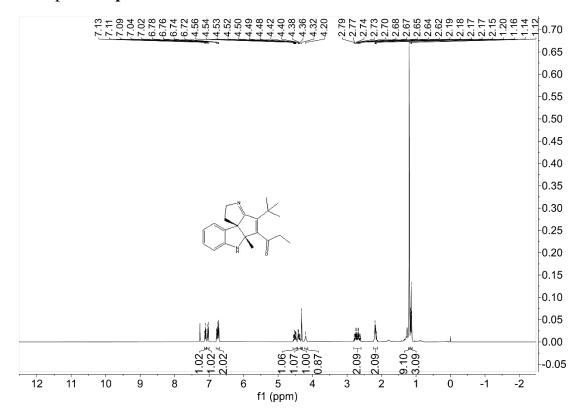
Compound 31

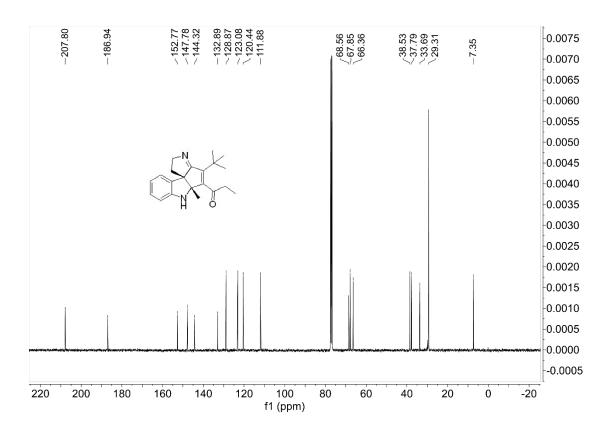

0 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm)

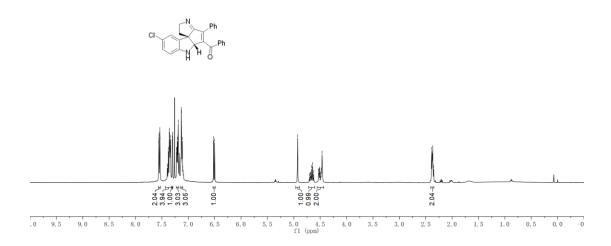
Compound 3m

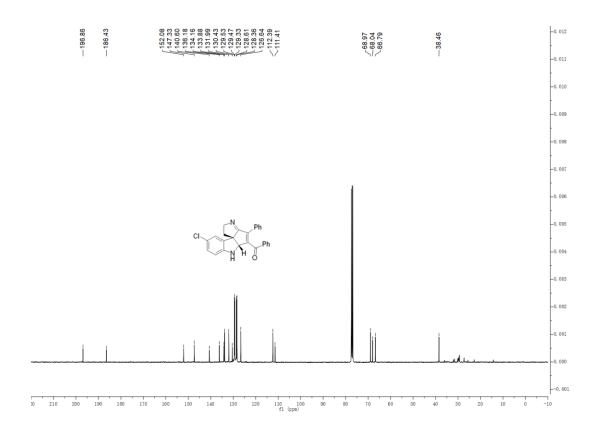

0 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 fl (ppm)

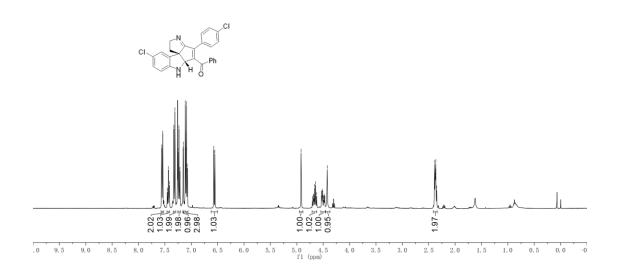

Compound 3n

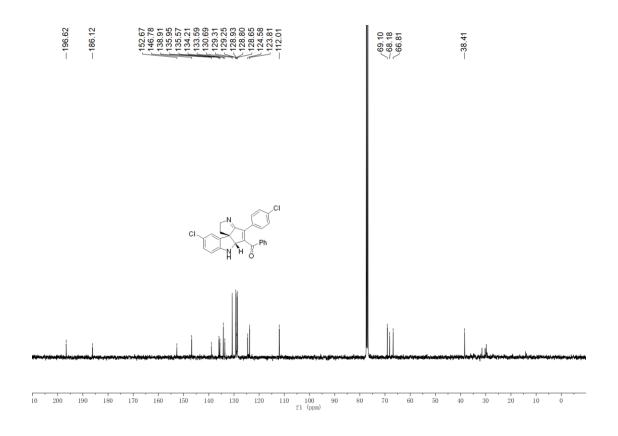


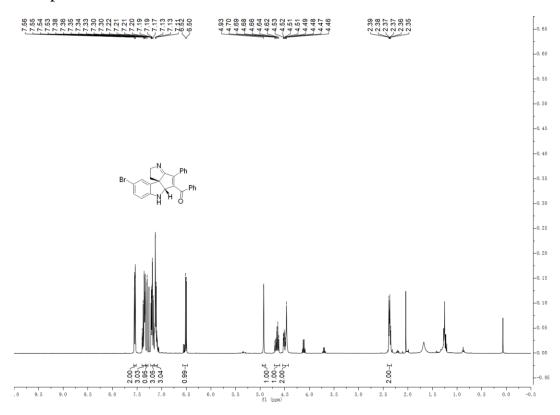

Compound 30

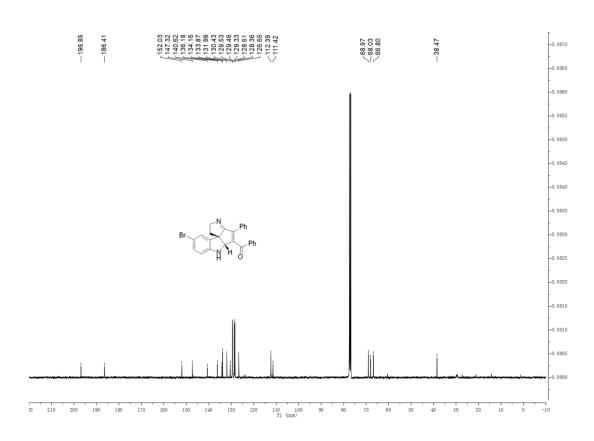

Compound 3p

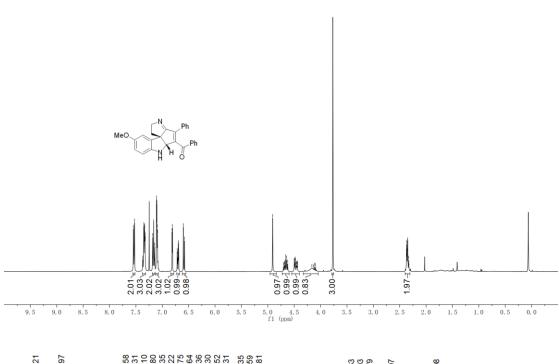



Compound 4a

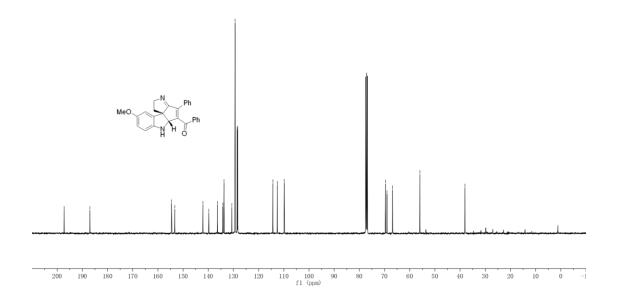

2.38 2.37 2.37 2.37 2.35



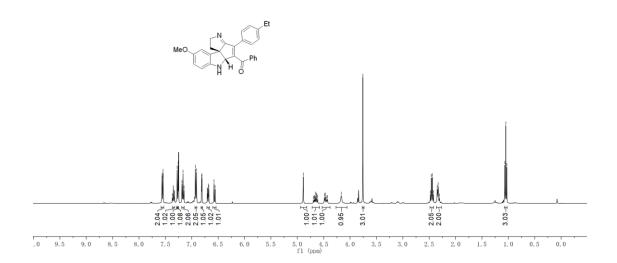

Compound 4b



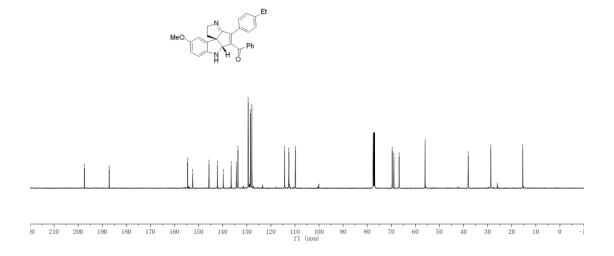
Compound 4c



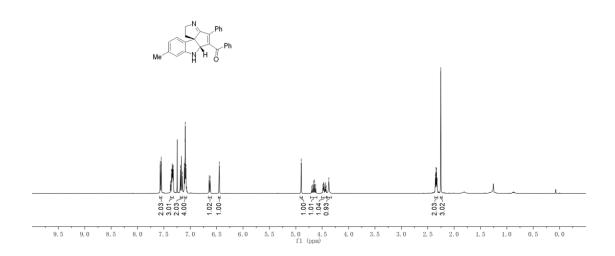
Compound 4d



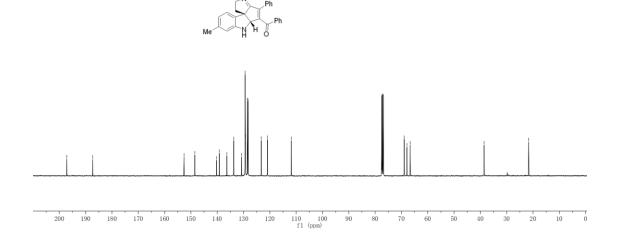
Compound 4e


2.35 2.35 2.35 2.35 2.33 1.05

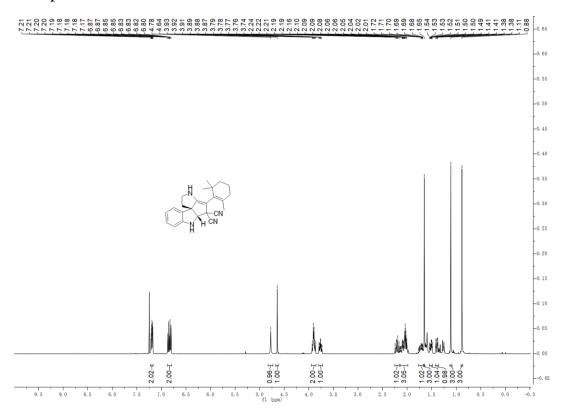
-197.40

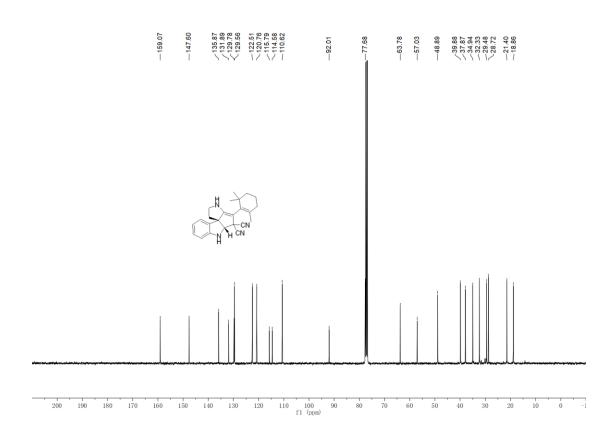

194.52 145.17 142.17 139.73 139.64 133.66 129.44 129.44 127.87

68.95 68.95 66.75 —55.97 -38.07 -28.70 -15.39



Compound 4f


4.99 4.66 4.65 4.64 4.49 4.45 4.45 4.43



187.13 187.13 187.13 187.14 187.31 187.14 187.13 187.14 188.98 188.98 188.98 188.98 188.60

Compound 8

