Supplementary Information

A novel hollow CuS-CuO nanocube core and NiFe-LDH nanosheet

shell electrocatalyst for oxygen evolution reaction applications

Runmiao Chen,^a Long Ma,^{ad} Qingdan Hui,^a Pengjing Yin,^a Pengpeng Du,^c Qiufang Liu,^c Yan Yan,^c Qi Xue,^{*ab} Yuan Dang^{ab} and Yuanzhen Zhou^{*ab}

- ^{b.} Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- ^c Shaanxi Coal Chemical Industry Technology Research Institute Co. Ltd, Xi'an, 710100, China.
- ^{*d.*} Sinopec Great Wall Energy & Chemical (Ningxia) Co., Ltd., Ningxia 750411, China Corresponding author.
- *E-mail address: xueqi@xauat.edu.cn(*Qi Xue*), zhouyuanzhen@xauat.edu.cn(*Yuanzhen Zhou*)

^{*a.*} School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.

Supplementary Figures

Figure S1. Schematic illustration of the synthesis of CuS-CuO@NiFe-LDH.

Figure S2. EDX spectrums of CuS-CuO@NiFe-LDH.

Figure S3. XRD (a) and FT-IR (b) of Cu₂O.

Figure S4. Pore size distribution of the NiFe-LDH, CuS-CuO and CuS-CuO@NiFe-LDH.

Figure S5. The corresponding Tafel slopes and overpotential at 10 mA·cm⁻². (Samples 1-4 correspond in turn to Cu₂O, CuS-CuO, NiFe-LDH and CuS-CuO@NiFe-LDH, respectively.)

Figure S6. CV curves of (A) Cu₂O, (B) CuS-CuO, (C) NiFe-LDH and (D) CuS-CuO@NiFe-LDH at different scan rates from 5 to 100 mV s⁻¹.

Supplementary Tables

element	wt%
0	22.53
S	20.47
Fe	6.01
Ni	10.73
Cu	40.26

Table S1 Mass ratio of element in CuS-CuO@NiFe-LDH

Table S2 Performance comparison of representative OER electrocatalysts at a current density of 10 mA cm⁻² under 1 M KOH solution.

HER Catalysts	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Stability (h)	Ref.
CuS-CuO@NiFe-LDH	285	47.65	15	This work
CuNiP@Cu	318	100	20	1
Ni-Fe NP/N-C	330	56.7	10	2
FeCoNi-N-rGO	440	124	200 (ŋ ₅)	3
Fe-CuS/CuO/CS	340	31	10	4
Ni@3FCCO	369	69	18	5
Sn-Ni ₃ S ₂ @NF	321	-	110 (ŋ ₁₀₀)	6
Ni SAs@S/N-CMF	285	50.8	60	7
CoNiFe LDH	194	49	10	8
(Ni, Fe)S ₂ @MoS ₂	270	101.22	24	9
Ni@CN	307	-	10	10
(FeCoNiCuZn)O	323	64.5	50	11
Cu _{0.98} Dy _{0.02} CS/CuS	303	-	12 (ŋ ₅₀)	12

Supplementary References

- 1. P. Kumar, F. Dinsmore and W. Miao, ACS Appl. Energy Mater., 2022, 5, 12602-12613.
- H.-Y. Gong, X. Liang, G.-L. Sun, D.-W. Li, X.-J. Zheng, H. Shi, K. Zeng, G.-C. Xu, Y. Li, R.-Z. Yang and C.-Z. Yuan, *Rare Metals*, 2022, 41, 4034-4040.
- X. Chen, D. Chen, G. Li, C. Gong, Y. Chen, Q. Zhang, J. Sui, H. Dong, J. Yu, L. Yu and L. Dong, J. Alloys Compd., 2021, 873, 159833.
- 4. L. Tabassum, M. Khairul Islam, I. P. Perera, M. Li, X. Huang, H. Tasnim and S. L. Suib, *ACS Appl. Energy Mater.*, 2022, **5**, 12039-12048.
- 5. M. Yang, H. Tan, S. Ma, Y. Mi, L. Liu, Z. Zhao, H. Li and D. Xiong, *Nanoscale*, 2023, **15**, 12375-12387.
- C. Li, Y. Feng, J. Jiang, J. Zhu, H. Gao, T. Zhao, G. Xu and L. Zhang, ACS Appl. Nano Mater., 2024, 7, 15416-15424.
- 7. Y. Zhao, Y. Guo, X. F. Lu, D. Luan, X. Gu and X. W. D. Lou, *Adv. Mater*, 2022, **34**, e2203442.
- 8. R. C. Rohit, A. D. Jagadale, S. K. Shinde, D. Y. Kim, V. S. Kumbhar and M. Nakayama, *J. Alloys Compd.*, 2021, **863**, 158081.
- 9. Y. Liu, S. Jiang, S. Li, L. Zhou, Z. Li, J. Li and M. Shao, *Appl. Catal., B*, 2019, **247**, 107-114.
- 10. S.-T. Li, G.-M. Shi, Q. Li, F.-N. Shi, X.-L. Wang and L.-M. Yang, *Colloids Surf.*, *A*, 2021, **615**, 126162.
- 11. Y. Lao, X. Huang, L. Liu, X. Mo, J. Huang, Y. Qin, Q. Mo, X. Hui, Z. Yang and W. Jiang, *Chem. Eng. J.*, 2024, **481**, 148428.
- 12. J. D. Rodney, S. Deepapriya, M. C. Robinson, S. J. Das, S. Perumal, P. Sivakumar, H. Jung, B. C. Kim and C. J. Raj, *Applied Materials Today*, 2021, **24**, 101079.