1	Synergistic effect of dual p-n heterojunction in C0 ₃ O ₄ -Ag ₂ O-SrTiO ₃					
2	ternary composite for enhancing photocatalytic degradation of toluene					
3						
4	Chuang Xu, Dongliang Gao, Huimin Zhang, Jingyue Bi, Fan Xue, Haoyu Zhang,					
5	Wenqing Feng, Zhaoyang Fei*, Xu Qiao*					
6						
7	State Key Laboratory of Materials-Oriented Chemical Engineering, College of					
8	Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China					
9						
10						
11						
12						
13						
14	Corresponding Authors					
15	* E-mail: zhaoyangfei@njtech.edu.cn (Z. Fei), qct@njtech.edu.cn (X. Qiao).					
16						

26 Fig. S3 XPS spectra of Co 2p in the Co₃O₄-Ag₂O-STO catalysts with varying contents.

Fig. S4 (a) photocurrent diagram and (b) Nernst impedance diagram of the Co₃O₄-Ag₂O-STO

33 Fig. S5 DMPO spin-trapping ESR spectra of (a) \cdot OH and (b) \cdot O₂⁻ for Co₃O₄-Ag₂O-STO and (c)

- 34
- the removal rate of toluene over the Co₃O₄-Ag₂O-STO using different quenchers.
- 35

37 Fig. S6. N₂ adsorption-desorption isotherms and pore size distribution curves of STO, Ag₂O-STO,

	Relative content of Co ²⁺	Relative content of	
Catalysts	(%)	Co ³⁺ (%)	
5%Co ₃ O ₄ -Ag ₂ O-STO	63	37	
7.5%Co ₃ O ₄ -Ag ₂ O-STO	56	44	
10%Co ₃ O ₄ -Ag ₂ O-STO	41	59	
12.5%Co ₃ O ₄ -Ag ₂ O-STO	35	66	

Table S1 the ratio of Co²⁺ and Co³⁺

41 Tested by XPS.

Sample	Catalyst amount (mg)	Toluene	Conversion Rate	Reaction Rate (nmol/g/s)	Ref.
Co ₃ O ₄ -Ag ₂ O-STO	150	100 ppm Dynamic (100 mL/min)	81%	40.18	This work
Zr ₁₀ Ti ₁ -U6N- 300@TiO ₂	100	50 ppm Dynamic (100 mL/min)	94%	34.89	[1]
TiO ₂ -UiO-66-NH ₂	100	25 ppm Dynamic (100 mL/min)	73%	10.82	[2]
Pd/TiO ₂ -N	50	50 ppm Dynamic (50 mL/min)	81%	30.13	[3]
Pt/TiO ₂ -C	200	40 ppm Dynamic (300 mL/min)	68%	30.36	[4]
BiOBr/Bi ₂ WO ₆	100	30 ppm Static (2.5 L)	95%	4.41	[5]
Ag ₃ PO ₄ /TiO ₂ -10	100	1 μL Static	96%	17.42	[6]

Table S2. Performance Comparison of Photocatalytic Toluene in Related Studies

44 **References:**

- 45 [1] J. Wang, C. Yang, D. Ye and Y. Hu, *Appl. Catal.*, *B*, 2025, 361, 124635.
 46 https://doi.org/10.1016/j.apcatb.2024.124635.
- 47 [2] J. Zhang, Y. Hu, J. Qin, Z. Yang and M. Fu, Chem. Eng. J., 2020, 385, 123814.
- 48 https://doi.org/10.1016/j.cej.2019.123814.
- 49 [3] C. Wu, Q. Liu, Y. Zhan, W. Tan, X. Wei, Q. Tong, H. Wan and L. Dong, Chem.
- 50 Eng. J., 2023, 475, 146294. https://doi.org/10.1016/j.cej.2023.146294.
- 51 [4] L. Yan, Q. Wang, W. Qu, T. Yan, H. Li, P. Wang and D. Zhang, Chem. Eng. J.,
- 52 2022, **431**, 134209. https://doi.org/10.1016/j.cej.2021.134209.
- 53 [5] K. Da, X. Mao, Y. Ma, L. Wu, Y. Li, S. Zou, S. Cao, J. Yang and X. Fan, Mater.
- 54 *Today Commun.*, 2024, **40**, 109612. https://doi.org/10.1016/j.mtcomm.2024.109612.
- 55 [6] C. Jia, H. Fu, Z. Wang, C. Zhao and C.-C. Wang, J. Environ. Chem. Eng., 2024, 12,
- 56 112747. https://doi.org/10.1016/j.jece.2024.112747.