Cu₂S/Ni_xS_v multi-interfaces induced Ni (III) for optimizing alkaline

hydrogen evolution reaction

Fei Yuan,*a Xiaoteng Wang,a Gang Liua and Yang Liua

^aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

E-mail: yuanf@nwnu.edu.cn

Experiment section

Materials and chemicals

Nickel (II) chloride hexahydrate puratre (NiCl₂•6H₂O, \geq 98%) was purchased from Beijing Hongxing Co. Ltd. Copper chloride (CuCl₂•2H₂O, \geq 99%) was got from Tianjin Guangfu technology Co. Ltd. Ethylene glycol (C₂H₆O₂, EG, \geq 99.5%) was gained from Tianjin Medical Chemistry Co. Ltd. Hydrazine hydrate (N₂H₄•H₂O, \geq 80%) was obtained from Tianjin Damao technology Co. Ltd. S powder (S, \geq 98%) was gained from Tianjin Guangfu technology Co. Ltd. Pt/C (20 wt%) and Nafion (5 wt%) were supplied by Alfa Aesar. In addition, all of regents used in this experiment were analytically pure without purification.

Characterization

The powder X-ray diffraction (XRD) were conducted by using Cu-K α radiation as the X-ray source in the 2 θ range of 20 - 80°. X-ray photoelectron spectroscopy (XPS) was performed using a Kratos AXIS Ultra DLD instruments with a monochromatic X-ray source (AL K α hv =

1486.6) and all elemental peaks were revised by the standard position of C 1s peak. Transmission electron microscope (TEM) images were observed with a TecnaiTM G²F30, FEI operating at 200 KV, equipped with energy dispersive X-ray spectroscopy (EDX, Tecnai G2, USA).

Electrochemical measurement

Generally, 4 mg black catalyst powder was dissolved in a 1 mL solution which was composed of ethanol and ultrapure water in a 1:1 volume ratio. Then, 30 µL Nafion aqueous solution (0.5 wt%) was added into the 1 mL solution mentioned earlier and ultrasonicated it for 0.5 h to form a uniform black solution. Eventually, 5 µl black solution was drop on the 3.0 mm diameter glassy carbon electrode serving as the working electrode (loading 0.286 mg cm^{-2}). In this article, all the electrochemical tests were realized through electrochemical workstation (CHI 660E, Shanghai Chenhua) with three-electrode configuration without iR compensation and at room temperature. In the test, a graphite carbon rod was utilized as contrast electrode, while the saturated Ag/AgCl electrode was treated as the reference electrode. All potentials (vs. Ag/AgCl) appearing in the article were transformed into reversible hydrogen electrode (RHE), which were corrected by means of using the Nernst equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.059 pH + 0.198 V.

HER measurement

The HER electrochemical activities were all measured in 1.0 M KOH

electrolyte. Linear sweep voltammetry (LSV) polarization curves were investigated in the range of - 0.8 V - -1.8 V vs. Ag/AgCl with a scan rate of 5 mV s⁻¹. The electrochemical impedance spectroscopy (EIS) measurements were tested at -120 mV vs. Ag/AgCl from 10⁵ to 0.01 Hz. In order to obtain the electrochemically active surface areas of all the catalysts, cyclic voltammograms (CVs) were investigated between -0.8 V and -0.7 V with the different scan rates (20 - 200 mV s⁻¹). In addition, the HER stability of the catalysts was also performed by Amperometric i-t Curve at -1.20 V vs. RHE for 33 h. All the current density of the catalysts were rectified to the geometrical surface area of the GCE (0.07cm⁻²).

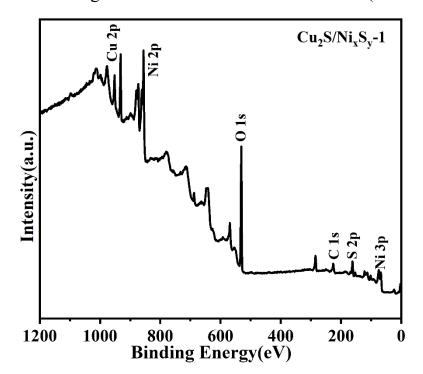


Fig. S1. The full XPS survey spectra of the Cu_2S/Ni_xS_y-1 .

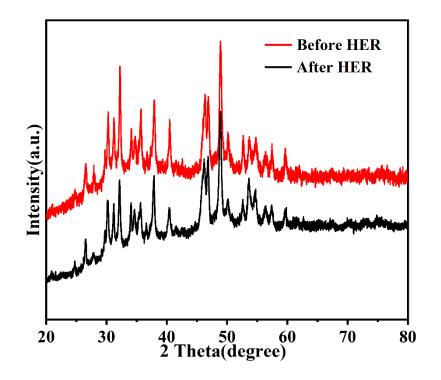


Fig. S2. XRD patterns of Cu_2S/Ni_xS_y -1 after stability test.

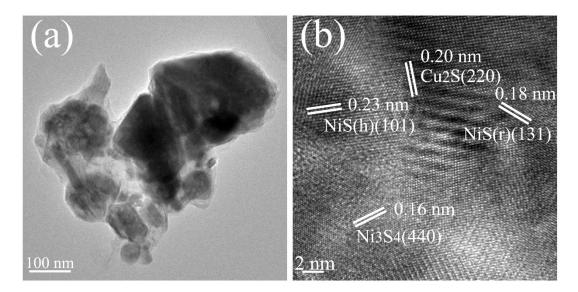
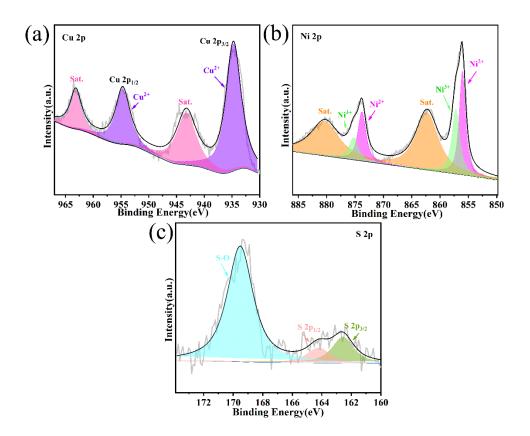



Fig. S3. The TEM and TRTEM of Cu_2S/Ni_xS_y -1 after stability test.

Fig. S4. (a) Cu 2p (b) Ni 2p (c) S 2p spectra of Cu_2S/Ni_xS_y -1 after stability test.

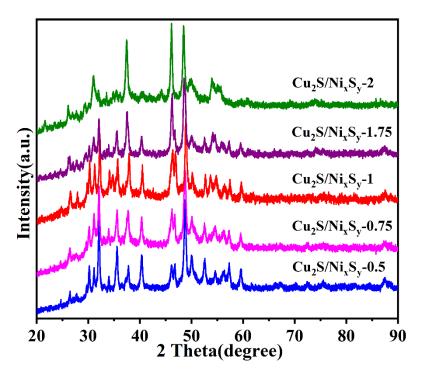
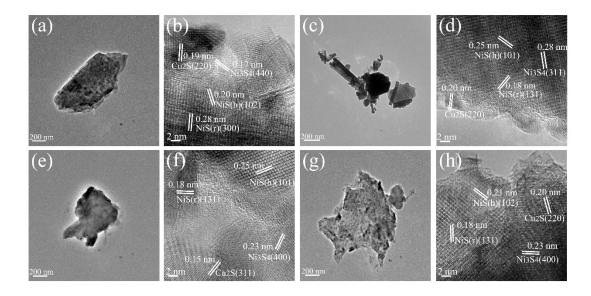



Fig. S5. XRD patterns of Cu_2S/Ni_xS_y -0.5, Cu_2S/Ni_xS_y -0.75, Cu_2S/Ni_xS_y -1, Cu_2S/Ni_xS_y -1.75 and Cu_2S/Ni_xS_y -2.

Fig. S6. TEM and TRTEM of (a, b) Cu₂S/Ni_xS_y-0.5 (c, d) Cu₂S/Ni_xS_y-0.75 (e, f) Cu₂S/Ni_xS_y-1.75 and (g, h) Cu₂S/Ni_xS_y-2.

Table S1. Initial dosage mass (mmol) of raw stuff in the prepared Cu_2S/Ni_xS_y -n electrocatalysts.

Sample	0.5	0.75	1	1.75	2
Cu ₂ S/Ni _x S _y -n					
CuCl ₂ •2H ₂ O	0.5	0.75	1	1.75	2
NiCl ₂ •6H ₂ O	1	1	1	1	1
S	2	2	2	2	2

Table S2. Content of Cu, Ni and S in the Cu_2S/Ni_xS_y -n electrocatalysts

Sample	0.5	0.75	1	1.75	2
Cu ₂ S/Ni _x S _y -n					
Cu (wt.%)	30.62	43.13	50.71	43.15	45.19
Ni (wt.%)	45.48	38.50	32.38	25.95	25.99

estimated from ICP-OES measurements.

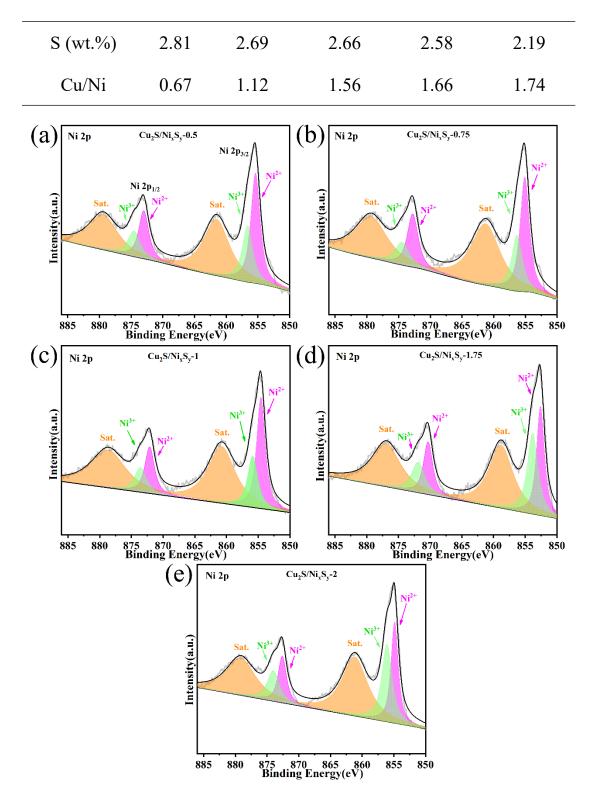
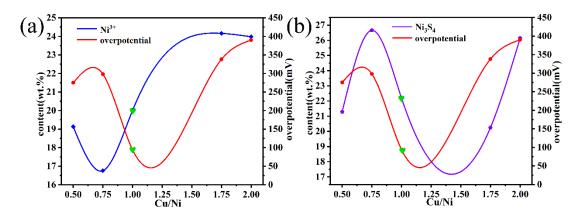


Fig. S7. Ni 2p XPS spectra of (a) $Cu_2S-Ni_xS_y-0.5$ (b) $Cu_2S-Ni_xS_y-0.75$ (c) $Cu_2S-Ni_xS_y-1$ (d) $Cu_2S-Ni_xS_y-1.75$ (e) $Cu_2S-Ni_xS_y-2$.


Table S3. The properties of the as-prepared electrocatalysts

Sample	0.5	0.75	1	1.75	2
Cu ₂ S/Ni _x S _y -n					
Ni ³⁺ (wt.%)	19.13	16.76	20.01	24.16	23.98

The Ni₃S₄, NiS (r) and NiS (h) of the samples were quantitatively analyzed by XRD peak intensity comparison. In Fig. 1a, according to the standard XRD diffraction peaks of Ni₃S₄ (JCPDS Card No. 76-1813), NiS (r) (JCPDS Card No. 12-41) and NiS (h) (JCPDS Card No. 65-830), we can see that the peaks corresponding to (311), (300) and (220) are diffraction peaks with strong relative intensity of Ni₃S₄, NiS (r) and NiS (h), respectively. The specific strength and ratio are shown in the Table S1.

Table S4. The intensity of XRD peaks (cm) corresponding to Ni_3S_4 , NiS (r) and NiS (h), and the proportion of Ni_3S_4 in the total Ni.

Sample	0.5	0.75	1	1.75	2
Cu ₂ S/NixSy-n					
Ni ₃ S ₄ (311)	0.69	0.88	0.81	0.67	0.91
NiS (r) (300)	1.89	1.49	1.64	1.07	0.44
NiS (h) (220)	0.66	0.93	1.20	1.55	2.13
sum	3.24	3.30	3.65	3.31	3.48
Ni ₃ S ₄ (wt.%)	21.29	26.66	22.19	20.24	26.14

Fig. S8. (a) relationship between Ni^{3+} and overpotential at different ratios of Cu and Ni (b) relationship between Ni_3S_4 and overpotential at different ratios of Cu and Ni.

Table S5. Comparison of the nickel sulfide compound catalysts HERactivity in alkaline electrolyte.

catalyst	Tafel slope (mV Overpotent		Ref.
	dec ⁻¹)	(mV)	
Ni/NiS/P, N, S–	135.00	155	1
rGO			
Zn–NiS-3	113.00	208	2
NiS@C	89.00	232	3
NiS film	143.30	290	4
Ni ₃ S ₂ @NiS-	75.50	129	5
250/NF			
NiS/VS	116.10	158	6
Ni-M@C-130	50.80	123	7
NiS film	125.00	169	8

$Cu_2S/Ni_xS_{v}-1$ 97.69 94 This we	ork
--------------------------------------	-----

- M. B. Z. Hegazy, M. R. Berber, Y. Yamauchi, A. Pakdel, R. Cao and U.-P. Apfel, Synergistic Electrocatalytic Hydrogen Evolution in Ni/NiS Nanoparticles Wrapped in Multi-Heteroatom-Doped Reduced Graphene Oxide Nanosheets, ACS Applied Materials & Interfaces, 2021, 13, 34043-34052.
- C. Prakash, P. Sahoo, R. Yadav, A. Pandey, V. K. Singh and A. Dixit, Nanoengineered Zn-Modified Nickel Sulfide (NiS) as a Bifunctional Electrocatalyst for Overall Water Splitting, *International Journal of Hydrogen Energy*, 2023, 48, 21969-21980.
- J. Zhang, Y. Wang, J. Cui, J. Wu, X. Shu, C. Yu, H. Bai, M. Zhai, Y. Qin, H. Zheng, Y. Zhu, Y. Zhang and Y. Wu, In-Situ Synthesis of Carbon-Coated β-NiS Nanocrystals for Hydrogen Evolution Reaction in Both Acidic and Alkaline Solution, *International Journal of Hydrogen Energy*, 2018, 43, 16061-16067.
- G. Rahman, S. Y. Chae and O.-s. Joo, Efficient Hydrogen Evolution Performance of Phase-pure NiS Electrocatalysts Grown on Fluorine-Doped Tin Oxide-Coated Glass by Facile Chemical Bath Deposition, *International Journal of Hydrogen Energy*, 2018, 43, 13022-13031.
- M. Chen, Q. Su, N. Kitiphatpiboon, J. Zhang, C. Feng, S. Li, Q. Zhao,
 A. Abudula, Y. Ma and G. Guan, Heterojunction Engineering of

Ni₃S₂/NiS Nanowire for Electrochemical Hydrogen Evolution, *Fuel*, 2023, **331**, 125794.

- K. Bao, Y. Yan, T. Liu, T. Xu, J. Cao and J. Qi, Constructing NiS– VS Heterostructured Nanosheets for Efficient Overall Water Splitting, *Inorganic Chemistry Frontiers*, 2020, 7, 4924-4929.
- K. Srinivas, Y. Chen, X. Wang, B. Wang, M. Karpuraranjith, W. Wang, Z. Su, W. Zhang and D. Yang, Constructing Ni/NiS Heteronanoparticle-Embedded Metal–Organic Framework-Derived Nanosheets for Enhanced Water-Splitting Catalysis, ACS Sustainable Chemistry & Engineering, 2021, 9, 1920-1931.
- G. Kalaiyarasan, K. Aswathi and J. Joseph, Formation of Nanoporous NiS Films from Electrochemically Modified GC Surface with Nickel Hexacyanoferrate Film and its Performance for the Hydrogen Evolution Reaction, *International Journal of Hydrogen Energy*, 2017, 42, 22866-22876.