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1. Characterization

The FT-IR and ss 13C NMR spectra of the samples were recorded using a Nicolet 

6700 Fourier Transform Infrared Spectrometer (Thermo Scientific, USA) and a Bruker 

INOVA 400 MHz NMR Spectrometer, respectively. The surface chemical properties 

of the catalyst were analyzed using X-ray photoelectron spectroscopy (XPS, 

ESCALAB 250, USA). The UV-Vis diffuse reflectance spectra (UV-Vis DRS) were 

measured using a U-3010 spectrometer (Hitachi, Japan). The surface morphologies of 

Por-BT-1 and Por-BT-2 were characterized by scanning electron microscopy (SEM, 

Merlin Compact, Japan). The BET surface area and pore size distribution were recorded 

by nitrogen adsorption-desorption isotherms at 77 K using a Micromeritics ASAP 2020 

surface area analyzer. The thermal stability of the samples was evaluated by 

thermogravimetric analysis (TGA, TG209F3, Germany) with a heating rate of 10°C 

min−1 from 30°C to 700°C. The contact angle of the samples was measured using a 

droplet shape analyzer (Kruss, DSA25). The concentration of TC in aqueous solutions 

was analyzed by UV-Vis spectrophotometry (METASH X-8S, China), while the 

concentrations of BPA, BPAF, BPF, and BPS in solutions were determined by high-

performance liquid chromatography (HPLC, Fuli LC5090, China). The 

photoelectrochemical properties of the catalysts were measured using a CHI760E 

electrochemical workstation (Chenhua, China). Radicals were detected by electron spin 

resonance spectroscopy (Bruker ESR 5000, Germany), and the total organic carbon 

(TOC) content was measured using a multi N/C analyzer (analytik-jena multi N/C 

2100S, Germany). Reaction intermediates were analyzed by liquid chromatography-
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mass spectrometry (LC-MS, Agilent 8860, California, USA).

2. Synthetic procedure

The synthetic procedures of Por-BT-1 and Por-BT-2 are shown in the manuscript.

Synthesis of Por-BT-L：5,10,15,20-Tetra(4-bromophenyl) porphyrin (0.20 g, 

0.20 mmol), 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,1,3-

benzothiadiazole (0.04 g, 0.10 mmol), and tetrabutylammonium iodide (0.01 g, 0.06 

mmol) were dissolved in 20 mL of 1,4-dioxane in a 100 mL Schlenk flask under a N2 

atmosphere. 1.40 mL of K2CO3 aqueous solution (2 M) was then added, followed by 

the addition of tetrakis(triphenylphosphine)palladium (0.03 mg, 0.02 mmol) with 

continuous N2 flow. The reaction was heated to 110 °C and stirred for 3 d. The mixture 

was then cooled to room temperature and filtered. The solid residue was extracted with 

methanol, dichloromethane, and tetrahydrofuran using a Soxhlet extractor, followed by 

drying in a vacuum oven at 60 °C to afford 0.06 g of Por-BT-L with a yield of 53.6%.

Synthesis of Por-BT-M：5,10,15,20-Tetra(4-bromophenyl) porphyrin (0.20 g, 

0.20 mmol), 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,1,3-

benzothiadiazole (0.31 g, 0.80 mmol), and tetrabutylammonium iodide (0.01 g, 0.06 

mmol) were dissolved in 20 mL of 1,4-dioxane in a 100 mL Schlenk flask under a N2 

atmosphere. 1.40 mL of K2CO3 aqueous solution (2 M) was then added, followed by 

the addition of tetrakis(triphenylphosphine)palladium (0.03 mg, 0.02 mmol) with 

continuous N2 flow. The reaction was heated to 110 °C and stirred for 3 d. The mixture 

was then cooled to room temperature and filtered. The soli d residue was extracted 

with methanol, dichloromethane, and tetrahydrofuran using a Soxhlet extractor, 
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followed by drying in a vacuum oven at 60 °C to afford 0.18 g of Por-BT-M with a 

yield of 67.6%.

Fig. S1 Comparative schematic of TC degradation by three photocatalysts prepared at 

different reactant ratios.

3. Photoelectrochemical characterization

For the measurement of Mott-Schottky plots, transient photocurrent response, and 

electrochemical impedance spectroscopy (EIS), a three-electrode system was used. The 

working electrode was prepared by dropping 200 μL of the mixture onto an ITO glass 

substrate (1 cm × 2 cm × 0.1 cm). An Ag/AgCl electrode was used as the reference 

electrode, and a platinum sheet served as the counter electrode. The measurements were 

conducted in a 0.1 M sodium sulfate aqueous solution. A suspension was prepared by 

dispersing 5 mg of the sample in 1 mL of ethanol containing 20 μL of Nafion solution, 

followed by sonication. A 300 W xenon lamp was employed as the light source for the 

photoelectrochemical tests.

4. Radical detection
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To investigate the photocatalytic degradation properties, 10 mg of Por-BT-1 was 

dispersed in 20 mL of TC solution (10 ppm). Sodium ethylenediaminetetraacetate 

(EDTA-2Na) (8 mg) was added to scavenge holes (h⁺). The solution was then irradiated 

with a·300W·xenon lamp. Following this, the procedures were the same as those used 

in the aforementioned photocatalytic degradation experiments. Similarly, β-carotene (8 

mg) was added to scavenge singlet oxygen (¹O₂). In a separate experiment, 10 mg of 

Por-BT-1 was dispersed in 19.8 mL of TC solution (10 ppm), with 200 μL of 

isopropanol (IPA, AR, 99.5%) added to scavenge hydroxyl radicals (•OH). For the 

scavenging of superoxide radicals (•O₂⁻), 10 mg of Por-BT-1 was dispersed in 19.6 mL 

of TC solution (10 ppm), and 400 μL of a TEMPO solution (1 g/L) was added.

To assess the photocatalytic activity, 5 mg of Por-BT-2 was dispersed in 10 mL of 

BPA solution (10 ppm). Sodium EDTA-2Na (4 mg) was added to scavenge h+, and the 

solution was subsequently irradiated with a·300W·xenon lamp. The subsequent steps 

followed the same procedures as those used in the previously described photocatalytic 

degradation experiments. Similarly, β-carotene (4 mg) was added to scavenge ¹O₂. In 

another experiment, 5 mg of Por-BT-2 was dispersed in 9.9 mL of BPA solution (10 

ppm), with 100 μL of IPA, (AR, 99.5%) added to scavenge •OH. For scavenging •O₂⁻, 

5 mg of Por-BT-2 was dispersed in 9.8 mL of BPA solution (10 ppm), and 200 μL of a 

p-Benzoquinone (p-BQ) solution (1 g/L) was added.

5. Degradation pathways

Analysis was performed using a high-performance liquid chromatography coupled 

with a single quadrupole mass spectrometer (LC-MS). For the detection of degradation 
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intermediates of TC, a gradient elution was carried out using a 0.1% (v/v) formic acid 

aqueous solution (A) and acetonitrile (B) as mobile phases. The flow rate was set at 0.3 

mL/min with an injection volume of 20 μL, and the column temperature was maintained 

at 30°C. The analysis was conducted in negative electrospray ionization (ESI−) mode.

For the detection of BPA degradation intermediates, a mixture of ultrapure water 

and methanol (v/v=30/70) was used as the mobile phase, with a flow rate of 1 mL/min 

and an injection volume of 20 μL. The column temperature was set to 35°C, and the 

analysis was performed in negative electrospray ionization (ESI−) mode.

Fig. S2 FT-IR spectra of TBPP, BBTz and [BTMA]Br. (TBPP: 5,10,15,20-tetrakis(4-

bromophenyl)porphyrin, BBTz: 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzo[c][1,2,5]thiadiazole, [BTMA]Br: (2-Bromoethyl)trimethylammonium 

bromide)
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Fig. S3 The full XPS spectra, C 1s and S 2p high-resolution XPS spectra of (a-c) Por-

BT-1 and (d-f) Por-BT-2.
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Fig. S4 The TGA curves of Por-BT-1 and Por-BT-2.
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Fig. S5 The water contact angles of Por-BT-1 and Por-BT-2.
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Fig. S6 The UV-vis diffuse reflectance absorption spectra of Por-BT-1 and Por-BT-2.
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Fig. S7 The percentage of BPA residues in Por-BT-2 after dark adsorption and 

photocatalytic degradation.

Fig. S8 Photocatalytic reusability of Por-BT-2 in BPA degradation through five runs.
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Fig. S9 (a) The absorbance spectra of TC with different concentrations; (b) the 

corresponding standard curve.

Fig. S10 (a) The photocatalytic degradation performance of TC and (b) BPA.
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Fig. S11 The residual rate of total organic carbons for Por-BT-1 in the removal of TC 

(10 ppm) and Por-BT-2 in the removal of BPA (10 ppm).
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Fig. S12 The ESR spectra of DMPO–•OH, DMPO–•O2
−, TEMP–1O2, and TEMPO–h+ 

for (a-d) Por-BT-1 and (e-h) Por-BT-2 in the dark and under visible-light irradiation.
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Fig. S13 The LC-MS results of the photodegradation pathway of Por-BT-1 toward TC.
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Fig. S14 The LC-MS results of the photodegradation pathway of Por-BT-2 toward 

BPA.
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Table S1 The surface areas and pore volumes of Por-BT-1 and Por-BT-2. 

Sample
BET surface area SBET 

(m2 g-1)
Total pore valume

(cm3 g-1)
Pore size distribution 

(nm)

Por-BT-1 74.37 0.13 6.73

Por-BT-2 190.08 0.17 2.8

Table S2. Comparison of efficiency of removing BPA by different catalysts.

Catalysts Dosage
(g L-1)

CBPA 
(ppm)

Time 
(min)

Efficiency 
(%) Reference

Pristine TiO2 1 2.5 60 22 1

Nano PDI 0.5 5 480 94 2

g-C3N4NS+PS 0.5 5 90 10 3

π-conjugated-PDI 0.5 5 120 99.7 4

SKA-CN 0.3 ~10 100 98 5
Co-MiL-53-NH2-

BT 0.25 10 120 99.9 6

OCN 6 0.2 10 120 98.68 7

PDINH 0.5 10 480 82 8

g-C3N4 1 10 180 30 9

Por-BT-2 0.5 10 30 98.3 This 
work

Table S3. Comparison of efficiency of removing TC by different catalysts.

Catalysts Dosage 
(g L-1)

CTC 
(ppm)

Time 
(min)

Efficiency 
(%) Reference

Bi2S3/MIL-53(Fe) 0.1 10 180 90.9 10

Mn-SrTiO3 1 10 60 66.7 11

Ag3PO4/CuBi2O4 0.5 10 60 75 12

Bi2O2CO3/Ti3C2 0.5 20 120 31 13

CuPT-CPP 0.25 10 210 100 14

Ag@MOF-525 0.4 10 200 81 15
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Py-NH2–COF 0.2 10 90 3.1 16

Por-BT-1 0.5 10 40 83.7 This work

References

1. Xu, L.; Yang, L.; Johansson, E. M. J.; Wang, Y.; Jin, P., Chem. Eng. J. 2018, 350, 

1043-1055.

2. Wang, J.; Shi, W.; Liu, D.; Zhang, Z.; Zhu, Y.; Wang, D., Appl. Catal., B. 2017, 

202, 289-297.

3. Liu, B.; Qiao, M.; Wang, Y.; Wang, L.; Gong, Y.; Guo, T.; Zhao, X., Chemosphere. 

2017, 189, 115-122.

4. Zhang, Y.; Wang, D.; Liu, W.; Lou, Y.; Zhang, Y.; Dong, Y.; Xu, J.; Pan, C.; Zhu, 

Y., Appl. Catal., B. 2022, 300, 120762.

5. Xu, L.; Li, L.; Yu, L.; Yu, J. C., Chem. Eng. J. 2022, 431, 134241.

6. Lv, S.-W.; Liu, J.-M.; Zhao, N.; Li, C.-Y.; Wang, Z.-H.; Wang, S., J. Hazard. 

Mater. 2020, 387, 122011.

7. Long, X.; Feng, C.; Yang, S.; Ding, D.; Feng, J.; Liu, M.; Chen, Y.; Tan, J.; Peng, 

X.; Shi, J.; Chen, R., Chem. Eng. J. 2022, 435, 134835.

8. Liu, D.; Wang, J.; Bai, X.; Zong, R.; Zhu, Y., Adv. Mater. 2016, 28, 7284-7290.

9. Jing, L.; Wang, D.; He, M.; Xu, Y.; Xie, M.; Song, Y.; Xu, H.; Li, H., J. Hazard. 

Mater. 2021, 401, 123309.

10. Xie, J.; Tang, Y.; Chen, F.; Hao, C. C., J. Phys. Chem. Solids. 2023, 181, 111551.

11. Wu, G.; Li, P.; Xu, D.; Luo, B.; Hong, Y.; Shi, W.; Liu, C., Appl. Surf. Sci. 2015, 

333, 39-47.

12. Shi, W.; Guo, F.; Yuan, S., Appl. Catal., B. 2017, 209, 720-728.

13. Tan, B.; Fang, Y.; Chen, Q.; Ao, X.; Cao, Y., J. Colloid Interface Sci. 2021, 601, 

581-593.

14. Xu, Z.; Dong, W.; Cui, X.; Duan, Q., Chemosphere. 2024, 355, 141801.

15. Guo, A.; Wang, X.; Liu, H.; Li, X.; Yang, L.; Yang, W., Surf. Interfaces. 2023, 

38, 102843.



17

16. Hu, Z.; Luo, Y.; Wang, L.; Wang, Y.; Wang, Q.; Jiang, G.; Zhang, Q.; Cui, F., ACS 

Appl. Polym. Mater. 2023, 5, 9263-9273.


