Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Materials

UNRAVELING AIE IN ZINC(II) COORDINATION COMPLEXES: ROLE OF LIGAND STRUCTURE AND MECHANISTIC INSIGHTS

Y. Oleksii,^a Y. Cheret,^a M. Allain,^a A. Brosseau,^a S. Haacke,^b A. El-Ghayoury^{*a}

^a Univ Angers, CNRS, MOLTECH – Anjou, SFR MATRIX, F-49000 Angers, France

^b Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, CNRS,

Université de Strasbourg, 23 rue du Loess, Strasbourg 67083, France

* Corresponding author: <u>abdelkrim.elghayoury@univ-angers.fr</u>

CONTENTS

Table S1. Crystal data and structure refinement for ZnL ¹ .
Fig. S1. Crystal packing diagram showing the arrangement of ZnL^1 complexes with counter ions and solvent molecules along the <i>b</i> -axis
Fig. S2. Hydrogen bonding interactions between the hydroxyl (-OH) group of a methanol solvent molecule and a neighboring perchlorate counter-ion within the crystal structure of ZnL ¹ , as highlighted by dashed lines (see Table S2 for details)
Table S2. Hydrogen bonds parameters (Å, °) for ZnL ¹ 6
Table S3. Crystal data and structure refinement for ZnL ² .
Fig. S3. Absorption (a) and Emission ($\lambda_{exc} = 315 \text{ nm}$) (b) spectra of $1.0*10^{-5} \text{mol} \cdot \text{L}^{-1} \text{L}^{1}$ in the mixed solvent of water and THF system with different f_w
Fig. S4. Absorption (a) and Emission ($\lambda_{exc} = 314 \text{ nm}$) (b) spectra of $1.0*10^{-5} \text{mol} \cdot \text{L}^{-1}$ ZnL ¹ in the mixed solvent of water and MeCN system with different f_w
Fig. S5. Absorption (a) and Emission ($\lambda_{exc} = 341 \text{ nm}$) (b) spectra of $1.0*10^{-5} \text{mol} \cdot \text{L}^{-1} \text{ L}^2$ in the mixed solvent of water and THF system with different f_w
Fig.S6. Corresponding changes in fluorescence peak intensities of $\mathbf{ZnL^2}$ (I/I ₀ , I ₀ = fluorescence intensity in MeCN solution) in different f _w
Fig. S7. 2D trace recorded for L^2 for time range 1 ns. Data recorded for THF sample at concentration of 10^{-5} M at room temperature
Fig. S8. Kinetic trace obtained of L^2 for time range 1 ns. Data recorded for THF sample at concentration of 10^{-5} M at room temperature ($\tau = 0.03299$ ns)
Fig. S9. Kinetic traces obtained of ZnL² with 0%, 80% and 90% of water percentage9
Note S1. Relationship Between Fluorescence Lifetime and Steady-State Fluorescence
Fig. S10. Infrared spectra of L^1
Fig. S11. Infrared spectra of $\mathbb{Z}nL^1$
Fig. S12. Infrared spectra of L^2
Fig. S13. Infrared spectra of $\mathbb{Z}nL^2$
Fig. S14. ¹ H NMR (300 MHz, Chloroform- d) L ¹
Fig. S15. ¹³ C NMR (126 MHz, Chloroform- d) L ¹
Fig. S16. ¹ H NMR (300 MHz, Acetonitrile- d_3) ZnL ¹ 15
Fig. S17. ¹³ C NMR (126 MHz, Acetonitrile- d_3) ZnL ¹ 15
Fig. S18. ¹ H NMR (300 MHz, Chloroform- d) L ² 16
Fig. S19. ¹³ C NMR (126 MHz, Chloroform- d) L ² 16
Fig. S20. ¹ H NMR (300 MHz, Acetonitrile- d_3) ZnL ²
Fig. S21. ¹³ C NMR ((126 MHz, Acetonitrile- d_3) ZnL ² 17
Fig. S22. ESI-MS: L ¹

Fig.	S23.	ESI-MS: ZnL ¹ 1	8
Fig.	S24.	HR-MS: L ²	9
Fig.	S25.	ESI-MS: ZnL ² 1	9

Empirical formula	$C_{40}H_{34}Cl_2N_{10}O_{10}S_2Zn$
Formula weight, g/mol	1015.16
Temperature, K	200.00(10)
Crystal system	Monoclinic
Space group	I2/a
a/Å	18.4902(11)
b/Å	8.0542(3)
c/Å	28.4759(12)
α/°	90
β/°	90.379(5)
γ/°	90
Cell volume, Å ³	4240.6(3)
Z	4
$\rho_{calc},g/cm^3$	1.590
μ, mm ⁻¹	3.499
F(000)	2080
Crystal size, mm ³	0.222 x 0.139 x 0.049
Radiation	Cu Ka ($\lambda = 1.54184$) 2 Θ range for data collection 6.208° to
	145.506°
Index ranges	$-21 \le h \le 22, -9 \le k \le 9, -34 \le 1 \le 34$
Reflections collected	4284
Independent reflections	4284
Data/restraints/parameters	4284/5/304
Goodness-of-fit on F ²	1.014
Final R indexes [I>=2 σ	$R_1 = 0.0425, wR_2 = 0.1144$
(I)]	
Final R indexes [all data]	$R_1 = 0.0451, wR_2 = 0.1162$

Table S1. Crystal data and structure refinement for ZnL^1 .

Fig. S1. Crystal packing diagram showing the arrangement of **ZnL¹** complexes with counter ions and solvent molecules along the *b*-axis

Fig. S2. Hydrogen bonding interactions between the hydroxyl (-OH) group of a methanol solvent molecule and a neighboring perchlorate counter-ion within the crystal structure of **ZnL**¹, as highlighted by dashed lines (see Table S2 for details).

Table S2. Hydrogen bonds parameters (Å, °) for ZnL^1 .

D-H •••A	d (H•••A), Å	d(D•••A), Å	∠ (D-H •••A), °
$O(5)-H(5A) \bullet \bullet O(2)$	2.217	2.911	139.90

Table S3. Crystal data and structure refinement for ZnL².

Empirical formula	C H Cl4N OOS 7n
	$C_{44}\Pi_{36}C14\Pi_{10}O9S_2Z\Pi$
Formula weight, g/mol	1120.12
Temperature, K	200.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	13.3088(3)
b/Å	14.6201(3)
c/Å	14.6236(3)
α/°	71.154(2)
β/°	76.115(2)
γ/°	64.496(2)
Cell volume, Å ³	2413.44(10)
Z	2
$\rho_{calc},g/cm^3$	1.541
μ , mm ⁻¹	4.113
F(000)	1144
Crystal size, mm ³	0.383 × 0.168 × 0.119
Radiation	Cu K α (λ = 1.54184) 2 Θ range for data collection 6.432° to
	152.296°
Index ranges	$-15 \le h \le 14, -18 \le k \le 18, -18 \le l \le 18$
Reflections collected	44155
Independent reflections	9750 [$R_{int} = 0.0398$, $R_{sigma} = 0.0223$]
Data/restraints/parameters	9750/135/669
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2 σ	$R_1 = 0.0466, wR_2 = 0.1296$
(I)]	
Final R indexes [all data]	$R_1 = 0.0491, wR_2 = 0.1325$

Fig. S3. Absorption (a) and Emission ($\lambda_{exc} = 315 \text{ nm}$) (b) spectra of 1.0*10⁻⁵mol · L⁻¹ L¹ in the mixed solvent of water and THF system with different f_w

Fig. S4. Absorption (a) and Emission ($\lambda_{exc} = 314 \text{ nm}$) (b) spectra of $1.0*10^{-5} \text{mol} \cdot \text{L}^{-1} \text{ ZnL}^{1}$ in the mixed solvent of water and MeCN system with different f_w

Fig. S5. Absorption (a) and Emission ($\lambda_{exc} = 341 \text{ nm}$) (b) spectra of $1.0*10^{-5} \text{mol} \cdot \text{L}^{-1} \text{ L}^2$ in the mixed solvent of water and THF system with different f_w

Fig.S6. Corresponding changes in fluorescence peak intensities of $\mathbf{ZnL^2}$ (I/I₀, I₀ = fluorescence intensity in MeCN solution) in different f_w

Fig. S7. 2D trace recorded for L^2 for time range 1 ns. Data recorded for THF sample at concentration of 10^{-5} M at room temperature

Fig. S8. Kinetic trace obtained of L² for time range 1 ns. Data recorded for THF sample at concentration of 10^{-5} M at room temperature ($\tau = 0,03299$ ns)

Fig. S9. Kinetic traces obtained of ZnL² with 0%, 80% and 90% of water percentage

Note S1. Relationship Between Fluorescence Lifetime and Steady-State Fluorescence intensity

In fluorescence studies involving molecular aggregation, the relationship between the amplitude-weighted average lifetime $\langle \tau \rangle$ and the time-integrated fluorescence signal is essential for interpreting the origin of emission enhancement. Here, we provide a mathematical and conceptual justification for comparing steady-state fluorescence intensities with time-resolved fluorescence lifetimes, especially in systems where spectrally distinct emissive species cannot be resolved.

In this derivation, we show that the steady-state fluorescence intensity is proportional to the amplitude-weighted average fluorescence lifetime $\langle \tau \rangle$, under the assumption that absorption at the excitation wavelength remains approximately constant across samples.

The fluorescence QY is defined as:

 $\Phi_f = \frac{Number \ of \ emitted \ photons}{Number \ of \ absorbed \ photons}$

Experimentally, it is determined by measuring the temporally and spectrally integrated fluorescence signal $\int_{\lambda em} F^u(\lambda) d\lambda$ with respect to the one of a reference sample, with a known Φ_f , and normalising with respect to the different amount of absorption at the excitation wavelength $f_r(\lambda_{ex})$:

$$\Phi_f^u = \Phi_f^r \frac{f_r(\lambda_{ex})}{f_u(\lambda_{ex})} \cdot \frac{\int_{\lambda em} F^u(\lambda) d\lambda}{\int_{\lambda em} F^r(\lambda) d\lambda} \cdot \frac{n_u^2}{n_r^2}$$

Here, u and r denote the "unknown" and "reference" samples, respectively. Since the solvents are the same, the ratio of refractive indices n_u and n_r is 1. This approach is used to relate the steady-state fluorescence intensities to the time-resolved fluorescence lifetimes. The absorption at the excitation wavelength λ_{ex} is related to the absorbance A by:

$$f_{(\cdot)}(\lambda_{ex}) = 1 - 10^{-A_{(\cdot)}(\lambda_{ex})}$$

When comparing the Φ_f of the two samples with different water fractions (x and y), the ratio simplifies to:

$$\frac{\Phi_f^y}{\Phi_f^x} = \frac{f_x(\lambda_{ex})}{f_y(\lambda_{ex})} \cdot \frac{\int_{em} F^y(\lambda) d\lambda}{\int_{em} F^x(\lambda) d\lambda}$$

where the integral are carried out over the full emission spectral range. How does the temporally integrated fluorescence signal $\int_{em} F^u(\lambda) d\lambda$ relate to the time-resolved kinetics? It is proportional to the time integral of the fluorescence decay:

$$\int_{em} F^{u}(\lambda) d\lambda = C \int_{0}^{\infty} I_{0} \left(\sum_{i=1}^{N} A_{i} e^{-t/\tau_{i}} \right) dt$$

Where, C is a proportionality factor describing the sensitivity of the instrument, and I_0 is the intensity signal at t=0, which is proportional to the excitation power, the absorption $f(\lambda_{ex})$, and the radiative rate of the fluorophore. The temporal integral goes over the sum of

$$\sum_{i=1}^{N} A_{i}\tau_{i} \int_{0}^{\infty} A_{i}e^{-t/\tau_{i}}dt = A_{i}\tau_{i}.$$

exponentials and is simply given by . When we now relate the ratio of the time-integrated fluorescence signals to the temporal integral of kinetics we find:

$$\frac{\int_{em} F^{\mathcal{Y}}(\lambda) d\lambda}{\int_{em} F^{\mathcal{X}}(\lambda) d\lambda} = \frac{\left[\int_{0}^{\infty} I_0\left(\sum_{i=1}^{N} A_i e^{-t/\tau_i}\right) dt\right]_{\mathcal{Y}}}{\left[\int_{0}^{\infty} I_0\left(\sum_{i=1}^{N} A_i e^{-t/\tau_i}\right) dt\right]_{\mathcal{X}}} = \frac{I_0^{\mathcal{Y}}}{I_0^{\mathcal{X}}} \cdot \frac{\left[\sum_{i=1}^{N} A_i \tau_i\right]_{\mathcal{Y}}}{\left[\sum_{i=1}^{N} A_i \tau_i\right]_{\mathcal{X}}}$$

$$< \tau_y > = \left[\sum_{i=1}^N A_i \tau_i\right]_y$$
 and

The average lifetimes calculated in the paper are

$$<\tau_x> = \left[\sum_{i=1}^N A_i \tau_i\right]_y \sum_{\text{since }i=1}^N A_i = 1$$
. Hence, we have :
 $\frac{\int_{em} F^y(\lambda) d\lambda}{\int_{em} F^x(\lambda) d\lambda} = \frac{I_0^y}{I_0^x} \cdot \frac{<\tau_y>}{<\tau_x>}$

Now, back to the ratio of the Φ_f 's:

$$\frac{\Phi_f^y}{\Phi_f^x} = \frac{f_x(\lambda_{ex})}{f_y(\lambda_{ex})} \cdot \frac{\int_{em} F^y(\lambda) d\lambda}{\int_{em} F^x(\lambda) d\lambda} = \frac{f_x(\lambda_{ex})}{f_y(\lambda_{ex})} \cdot \frac{I_0^y}{I_0^x} \cdot \frac{\langle \tau_y \rangle}{\langle \tau_x \rangle}$$

Finally, since I_0 scales with absorption and excitation power (which are the same for both samples), we can simplify:

$$\frac{\Phi_f^y}{\Phi_f^x} = \frac{\int_{em} F^y(\lambda) d\lambda}{\int_{em} F^x(\lambda) d\lambda} = \frac{\langle \tau_y \rangle}{\langle \tau_x \rangle}$$

In our system, AIE is observed with increasing water content in MeCN. However, the emission spectra of weakly emissive monomeric species and their aggregated counterparts overlap significantly. Therefore, spectral separation is not feasible, and both time-resolved and spectrally integrated steady-state data must be considered together to evaluate emission behavior.

The observed proportionality between $\langle \tau \rangle$ and the steady-state fluorescence intensity across different water fractions (Table 4, Fig. 9b) confirms this theoretical framework. Minor deviations from perfect proportionality can be attributed to slight variations in absorbance at 341 nm upon aggregation. Nevertheless, the correlation strongly supports that increased emission arises from a reduction of non-radiative decay pathways and stabilization of emissive states due to aggregation.

Fig. S11. Infrared spectra of ZnL¹

Fig. S12. Infrared spectra of L^2

Fig. S13. Infrared spectra of ZnL²

Fig. S14. ¹H NMR (300 MHz, Chloroform-d) L¹

Fig. S15. ¹³C NMR (126 MHz, Chloroform-d) L¹

Fig. S16. ¹H NMR (300 MHz, Acetonitrile-*d*₃) **ZnL**¹

Fig. S17. ¹³C NMR (126 MHz, Acetonitrile-d₃) ZnL¹

Fig. S21. ¹³C NMR ((126 MHz, Acetonitrile-d₃) ZnL²

D:\Export\export_6fev23bis - msTornado Ar	nalysis																										- 0	×
File Edit View Tools Help																												
🐸 🖻 🖬 🐸 🖪 🕰 🔁 🛃	th th th	СН.																					1	lumber of Sp	ectra: 1	Tiled S	Spectra	
File Description	×10 ⁴	_1	2 [12] YO11.tas	Descript	tion: Y13Dit	tpos																						X ^
AmsTornadoAnalysis		5.60								-																		
[2] AM371crude-DCTB AM371crude-DC	n	1								8																		
[1] AM373-DCTBneg.tas AM373-DCTBneg	9	5.20 -								344																		
[10] DAV063-1.tas DAV063-1-DCTE	Br	4 00 1																										
[11] RAS113col2-SMn RAS113col2-SM	e In	4.00 7																										
[3] tat228F2-DCTBneg tat228F2-DCTBr	ne	4.40 -																										
[5] tat228F2-DCTBpos tat228F2-DCTBp	px .																											
[4] tat228prec-DCTBn tat228prec-DCT	B	4.00 -																										
[6] fat228prec-DC18p fat228prec-DC1 [12] Y011 tas Y13Ditnes	в	3 60 -																										
[7] YO11-ditpos.tas YO11-ditpos		1																										
[8] YO13-ditpos.tas YO13-ditpos	2	3.20 -																										
	tens	2 00 3																										
	E																											
		2.40 -																										
		200																										
		2.00																										
		1.60 -																										
		1 20																										
		1.20									1																	
		0.80													272													
		0.40 -																										
		0.00										-						1					***					L II
			335 336	337	338 3	39 340	341	342	343	344	345	346	347	348	349	350	351 3	152	353 35	4 355	356	357	358	359 360	361	362	363	miz +
	Bementa	al Compositio	on Estimation		Results:																							×
	Mass:		44.09678 ± 0.0	00069	#	Formula	1	Mass	DBE	Abs	. Елтог (u)	E	Error (u)		Error (pp	pm)										Cop	y to Clipbos	ard
	Tolerand	pe: 2	0 ppm		1	C19 H14 N	5 S	344.05	644 1	5.5	0.0	0034		0.00034		0.5	99 Simu	late	Add Spe	trum							Driet	
	Electron	: Ever	•																									
	Charge:	+1	•																							Pn	nt Preview.	
	DBE Ra	nge: -0	15 - 200.0																							Print	with Spec	trum
	Max Rev	suits: 1	00																									
	Bement	5																										
	Sv	mbol Min	Max																									
	C		0 100																									
	н		0 200																									
	N		0 5																							Simula	tion	
	0		0 0																							Resolu	tion:	
	S		0 5																								0.1	•
																										Resolu	ring Power	:
	190				0		6																				10.47	114
	-1	0			Y																		JP	< A -	-		2/9/20	023

Fig. S22. ESI-MS: L¹

Fig. S23. ESI-MS: ZnL¹

D:\Export\export_13mars23 - msTornad	do Analyzis	
File Edit View Tools Help		
🐸 🖬 🗟 😂 🗳 🗠 🖌	Mumber of S	pectra: 1 🚖 Tiled Spectra 🔹
File Description	x1d ⁴ 13[12] YO62fmal-DITpos tas Description: YO62fmal-DITpos	× ^
.\msTornadoAnalysis	10	
[9] AS6-DCTBneg.tas AS6-DCTBn		
[1] CY130-DCTBpos.tas CY130-DCT		
[5] CY130-DCTBposH CY130-DCT	1.60	
[2] CY131-DCTBpos.tas CY131-DCT		
[6] CT131-DC1BposH CT131-DC1 [3] CY133-DCTBoos tas CY133-DCT	1.40 -	
[7] CY133-DCTBposH CY133-DCT		
[4] CY142-DCTBpos.tas CY142-DCT	1.20 -	
[8] CY142-DCTBposH CY142-DCT [11] FS2150-DCTBpos FS2150-DC		
[12] YO62final-DITpos YO62final-D		
and the second		
	- 08.0	
	- 080	
	0.40	
	0.00	
	0.20	
		E
	0.00 356 368 360 362 364 366 368 370 372 374 376 378 380 382	384 386 mż +
	Bemertal Composition Estimation	x
	Mess: 370 11239 ± 0.0074 # Example Mass DBE Mass Example Example	County Ontword
	Tolessone 20 nom 1211155 3201129 15 0.00030 0.00 0.00 Smilate Add Spectrum	Copy to Cipboard
		Print
		Print Preview
		Print with Spectrum
	Uter hange: 43 + 2000	
	Max Results: 100	
	Benett:	
	Symbol Min Max -	
	H 0 150	
		Simulation
	N 0 5	Resolution:
		Besolving Power
		50000
€¥	Option Etitimate	
🔊 🤗 🚞 D		12:06 PM
		3/13/2023

Fig. S24. HR-MS: L²

Fig. S25. ESI-MS: ZnL²