Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting information

Three-dimensional porous Gd-POMs/RGO composites for high-

performance supercapacitor electrodes

Fei Fei^a, Shuai Wang^a, Lanqin He^a, Pushan Wen^{b,*}

^aDepartment of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi

563006, Guizhou, China

^bDepartment of Chemistry and Environmental Engineering, Guizhou Industry Polytechnic College, Guiyang, 550008, Guizhou, China

*Corresponding author. E-mail address: wenpushan@126.com (P. Wen).

Characterization

The morphologies and elemental analyses were conducted using Field Emission Scanning Electron Microscopy (FESEM, JEOL-7610F Plus) equipped with Energy Dispersive Spectroscopy (EDS), and Transmission Electron Microscope (TEM, FEI Titan G2 60-300). The crystalline phases of the products were analyzed via X-ray diffraction (XRD, Philips X'pert diffractometer). Fourier Transform Infrared (FTIR-7600 lambda) spectroscopic analysis were used to examine the chemical bonds. The Raman analysis was conducted using Bruker Multi RAM equipment. The chemical structure and elemental information were detected via X-ray photoelectron spectroscopy (XPS, VG Scientific Ltd ESCALAB MK II). The Brunauer–Emmett– Teller (BET) surface area was measured using a Micromeritics instrument (ASAP 2020) in a liquid nitrogen atmosphere. The contact angle of the sample was measured using a contact angle measuring instrument (Theta Flex, sessile drop). The surface electrical properties of the materials were measured using a zeta potential analyzer (ZEECOM ZC2000, Microtec, Chiba, Japan).

Electrochemical measurements

The Bio-Logic SP-300 electrochemical workstation was used for the electrochemical evaluations, including cyclic voltammetry (CV), galvanostatic chargedischarge (GCD), and electrochemical impedance spectroscopy (EIS) in 2 M KOH electrolyte. Ag/AgCl and platinum plate were used as reference and counter electrodes, respectively. The working electrodes were prepared as follows: the as-synthesized samples, carbon black, and polyvinylidene fluoride (PVDF) were dispersed in N- methyl-2-pyrrolidinone with a mass ratio of 8:1:1, and the resulting slurry was cautiously coated on the nickel foam substrates (1 cm×1 cm). After that, the nickel foams were dried at 70 °C for 12 h under vacuum. The mass loading of active materials was ~3 mg cm⁻². Besides, an asymmetric supercapacitor (ASC) cell was manufactured using Gd-POMs/RGO (cathode) and activated carbon (anode) with 2 M KOH as the electrolyte. The mass ratio between the two electrodes (m_+/m_-) can be optimized according to the following equation:

$$\frac{m_{+}}{m_{-}} = \frac{C_{-} \times \Delta V_{-}}{C_{+} \times \Delta V_{+}}$$
(S1)

where C_s (F g⁻¹), ΔV (V) and m (g) are the specific capacitance, voltage window and mass of active materials, respectively.

The specific capacitance (C_s , F g⁻¹), energy density (E, W h kg⁻¹), and power density (P, W kg⁻¹) can be calculated according to the following equations:

$$C_{s} = \frac{I \times \Delta t}{m \times \Delta V}$$
(S2)

$$E_{s} = \frac{C_{s} \times \Delta V^{2}}{2 \times 3.6}$$
(S3)

$$P_{s} = \frac{3600 \times E}{\Delta t}$$
(S4)

where I(A), $\Delta V(V)$, Δt (s) and m (g) represent the current, voltage window, discharge time and mass of active materials, respectively.

1-					Element	wt%	at%	面总谱图
1					С	29.30	60.04	
-					Ν	2.21	3.88	
eV II					0	15.64	24.05	
å 0.5 -	Ϋ́				Мо	24.47	6.28	
Ξ.	Co				Со	5.01	2.09	
Ξ	Gd		Gd	1	Gd	23.39	3.66	
		The second second	GU Co	Co	alam databat kata distribut ang sang			Mo Mo
0-	1 ' ' ') 2		6 I I I I		10 1	2 1/	4 16	18 keV

Fig. S1 EDX spectrum of Gd-POMs/RGO.

Fig. S2 Water contact angle of a) POMs, b) Gd-POMs/RGO.

Fig.S3 Zeta potential analysis of (a) RGO, (b) Gd-POMs, and (c) Gd-POMs/RGO.

Fig. S4 (a) CV curves and (b) GCD curves of Gd-POMs.

Fig. S5 The analysis of capacitive- and diffusion-controlled contribution of Gd-POMs/RGO at various scan rates of $5-100 \text{ mV s}^{-1}$.

Fig. S6 (a) CV curves of Gd-POMs/RGO and AC at 10 mV s⁻¹. (b) EIS curve recorded

before and after cycling test of the assembled Gd-POMs/RGO//AC cell.

SC cells	E (W h kg ⁻¹)	P (W kg ⁻¹)	Ref.
Gd-POMs/RGO//AC	53.06	749.73	This work
PAHB-9/RGO//PAHB-9/RGO	26.2	600	1
rGO-PMo ₁₂ //rGO-PW ₁₂	39	658	2
Ni/Mn-PMo ₁₂ //AC	28.3	375	3
PW ₁₂ @MIL-101/PPy//PW ₁₂ @MIL-101/PPy	20.7	277.6	4
PMo ₁₂ @PPy//PMo ₁₂ @PPy	22.9	706	5
SWCNT-TBA-PV2M010//SWCNT-TBA-	15.4	15700	6
PV ₂ Mo ₁₀			
PPy/PMo ₁₂ //PEDOT/PW ₁₂	4	103	7
10-PMo12/SSAC-OP//10-PMo12/SSAC-OP	23.91	1016.05	8
CNT/PMo/PANI//CNT/PMo/PANI	18.7	2000	9
mAC//Mo ₁₃₂ -rGO	31.6	207.7	10

Table S1. Comparison of the electrochemical performance with some previously

reported SC cells based on POMs.

References

- 1 G. Fan, L. J. Deng and Y. Z. Gu, Sustainable Energy Fuels, 2021, 5, 1892-1903.
- 2 D. P. Dubal, N. R. Chodankar, A. Vinu, D.-H. Kim and P. Gomez-Romero, *Chemsuschem*, 2017, 10, 2742-2750.
- 3 M. J. Huang, P. C. Wang, Y. Liu, J. P. Zhao, Q. H. Lin and M. Lu, *Appl. Surf. Sci.*, 2019, **497**, 143760.
- 4 T. Y. Li, P. He, Y. N. Dong, W. C. Chen, T. Wang, J. Gong and W. L. Chen, *Eur. J. Inorg. Chem.*, 2021, **2021**, 2063-2069.
- 5 D. P. Dubal, B. Ballesteros, A. A. Mohite and P. Gomez-Romero, *Chemsuschem*, 2017, **10**, 731-737.
- 6 H. Y. Chen, R. Al-Oweini, J. Friedl, C. Y. Lee, L. Li, U. Kortz, U. Stimming and M. Srinivasan,

Nanoscale, 2015, 7, 7934-7941.

- 7 G. M. Suppes, C. G. Cameron and M. S. Freund, J. Electrochem. Soc., 2010, 157, A1030-A1034.
- 8 Y. Y. Ge, Y. Z. Wang, G. Z. Xu, Z. G. Fang, J. F. Bai and C. Li, *J. Electroanal. Chem.*, 2023, 947, 117779.
- 9 P. P. Yang, J. L. Xie, L. L. Wang, X. Y. Chen, F. K. Wu and Y. L. Huang, *Adv. Mater. Interfaces*, 2020, 7, 2000949.
- Y. N. Dong, L. Chen, W. L. Chen, X. T. Zheng, X. L. Wang and E. B. Wang, *Chem. Asian J.*, 2018, 13, 3304-3313.