Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting information for

Sulfur-bridged annulated BODIPYs: synthesis, structure and photophysical properties

Yongli Zhang, Xiong Fu, Jie Li, Kaiwen Guo, Hanyu Wen, Tingting Guo, Xiangguang Li,* Yanhua Yang,* and Shulin Gao*

Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of

Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.

*Email: lixiangguang@iccas.ac.cn, yh_yangkmu@126.com, 778144294@qq.com

Contents:

1.	Materials and General Methods	S2
2.	Synthesis and Characterization	S4
3.	Crystal Data	S6
4.	Photophysical Properties	S9
5.	Electrochemical Data	S19
6.	DFT Calculations	S23
7.	¹ H, ¹³ C, ¹⁹ F NMR and HRMS spectra for all new compounds	S29
8.	References	S46

1. Materials and General Methods

All chemicals were purchased from commercial suppliers and used without further purification unless otherwise specified. The solvent THF and toluene were distilled over sodium and benzophenone.

All reactions of air-sensitive compounds were carried out under dry argon by using Schlenk techniques. The reaction progress was monitored by thin layer chromatography (TLC) and spots were observed with a UV254 fluorescent indicator. Flash column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded in deuterated solvents using a BRUKER ASCENDTM400 Spectrometer. NMR chemical shifts are reported in ppm using the residual protonated solvent as an internal standard. High resolution mass spectra (HRMS) were determined on a Thermo ScientificTM Orbitrap ExplorisTM 120 Mass Spectrometer or a Waters GCT Premier TOF Mass Spectrometer.

Photophysical properties measurements. Absorption spectra were measured with a Shimadzu UV3600Plus UV-VIS-NIR Spectrophotometer in a 1 cm quartz cell. Fluorescence measurements were measured with Edinburgh FS5 Spectrofluorometer at room temperature.

Electrochemical measurements. Cyclic voltammetry (CV) was performed using a CHI620E electrochemical workstation at a scan rate of 50 mV s⁻¹, using glassy carbon discs as the working electrodes, Pt wire as the counter electrode, Ag/AgCl electrode as the reference electrode. 0.1 M tetrabutylammonium hexafuorophosphate (*n*-Bu₄NPF₆) dissolved in CH₂Cl₂ (HPLC grade) was employed as the supporting electrolyte. Ferrocene/ferrocenium was employed as an external reference, the energy level of which is assumed to be -4.8 eV below the vacuum level.^[1,2] The LUMO and HOMO levels were estimated from the onset potentials of the first reduction and oxidation waves in CV, respectively. The half-wave potential of oxidation peak of Fc was measured to be 0.48 V against Ag/AgCl.

X-ray stucture analysis. Single crystals of 2a suitable for X-ray analysis were

obtained by slow diffusion of MeOH into their toluene solution. A suitable crystal was selected and performed on a Bruker D8 VENTURE diffractometer. The crystal was kept at 198.00 K during data collection. The determination of unit cell parameters and data collections of **2a** was performed with Cu K α radiation (λ) at 1.54178 Å in the scan range 6.736° $\leq 2\theta \leq 137.628^{\circ}$. Using Olex2^[3], the structure was solved with the olex2.solve^[4] structure solution program using Charge Flipping and refined with the SHELXL^[5] refinement package using Least Squares minimisation. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Single crystals of **2b** suitable for X-ray analysis were grown by slow diffusion of MeOH into their CH₂Cl₂ solution. A suitable crystal was selected and performed on a Bruker D8 VENTURE diffractometer. The crystal was kept at 193.00 K during data collection. The determination of unit cell parameters and data collections of 2b was performed with Cu Ka radiation (λ) at 1.54178 Å in the scan range 8.896° $\leq 2\theta \leq$ 135.838°. Using Olex2^[3], the structure was solved with the olex2.solve^[4] structure solution program using Charge Flipping and refined with the SHELXL^[5] refinement package using Least Squares minimisation. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

2. Synthesis and Characterization

Compounds 3, 4-2 were synthesized according to literatures^[6,7].

Scheme S1 Synthesis procedure of BODIPYs 3, 4-2

Syntheses of 1a:

In a 250 mL clean beaker, pyrrole (2.80 mL, 40.5 mmol) was dissolved in 100 mL of 0.18 M hydrochloric acid solution. Then, 2-nitrobenzaldehyde (2.04 g, 13.5 mmol) was added to media and the composition was stirred at room temperature for 1.5 h. The reaction was monitored by TLC until completion. Afterward, the reaction mixture was filtered with suction, the filter cake was washed successively with 200 mL of water and 100 mL of petroleum ether, and then dry it. Subsequently, the crude product was subject to rough purification via silica gel column chromatography using a gradient eluent (PE/EA = 5/1to 2/1,v/v). The resulting compound 2,2'-((2nitrophenyl)methylene)bis(1H-pyrrole) obtained from this purification can be directly used in the next reaction.

To a solution of compound **2,2'-((2-nitrophenyl)methylene)bis(1H-pyrrole)** (2.2 g, 8.23 mmol) in CH₂Cl₂ (200 mL), a solution of 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (DDQ, 1.87 g, 8.23 mmol) in CH₂Cl₂ (50 mL) was added at room temperature for 1 h. Then, the resulting solution were treated by Et₃N (7.0 mL, 50 mmol) and BF₃·OEt₂ (9.5 mL, 77 mmol). After being stirred for 2 h at room temperature, thus the mixture was washed with brine and then dried with Na₂SO₄. After removing the solvents by rotary evaporation, the residue was purified by column chromatography on silica (petroleum ether/CH₂Cl₂ =8/1, v/v) and recrystallized with methanol/dichloromethane to give 902 mg of compound 1a in 35 % yield as red solids. NMR data of this compound agreed with the reported one.^[8] ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.95 (s, 2H), 7.77 (2td, *J* = 7.5, 1.5 Hz, 2H), 7.58 (dd, *J* = 7.1, 1.9 Hz, 1H), 6.67 (d, *J* = 4.2 Hz, 2H), 6.51 (d, *J* = 4.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.36, 145.56, 142.87, 134.87, 133.38, 132.57, 131.48, 129.99, 128.70, 125.39, 119.47. HRMS (EI, [M]⁺, 100%): calcd for C₁₅H₁₀BF₂N₃O₂, 313.0834; found, 313.0839.

3. Crystal Data

Figure S1. Single-crystal structure of **2a**, with thermal ellipsoids shown at 50% probability. (Hydrogen atoms and solvent molecules are omitted for clarity.)

Figure S2. Single-crystal structure of **2b**, with thermal ellipsoids shown at 50% probability. (Hydrogen atoms and solvent molecules are omitted for clarity.)

Identification code	2a
Empirical formula	$C_{15}H_9BF_2N_2S$
Formula weight	298.11
Temperature/K	198.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	7.24650(10)
b/Å	20.7755(4)
c/Å	16.9252(3)
α/°	90
β/°	90.1620(10)
γ/°	90
Volume/Å ³	2548.07(8)
Ζ	8
$\rho_{calc}g/cm^3$	1.554
µ/mm ⁻¹	2.420
F(000)	1216.0
Crystal size/mm ³	$0.18 \times 0.13 \times 0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	6.736 to 137.628
Index ranges	$-8 \le h \le 8, -18 \le k \le 25, -20 \le l \le 20$
Reflections collected	17855
Independent reflections	$4700 \; [R_{int} = 0.0546, R_{sigma} = 0.0515]$
Data/restraints/parameters	4700/3/379
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0653, wR_2 = 0.1754$
Final R indexes [all data]	$R_1 = 0.0797, wR_2 = 0.1890$
Largest diff. peak/hole / e Å ⁻³	0.90/-0.45

 Table S1. Crystal data and structure refinement for 2a. CCDC number = 2381648

Identification code	2b
Empirical formula	$C_{19}H_{17}BF_2N_2S$
Formula weight	354.21
Temperature/K	193.00
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	7.1383(2)
b/Å	11.5671(3)
c/Å	19.5512(5)
α/°	90
β/°	96.209(2)
γ/°	90
Volume/Å ³	1604.86(7)
Ζ	4
$\rho_{calc}g/cm^3$	1.466
µ/mm ⁻¹	2.012
F(000)	736.0
Crystal size/mm ³	$0.15\times0.13\times0.12$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/°	8.896 to 135.838
Index ranges	$-8 \le h \le 7, -13 \le k \le 12, -23 \le l \le 23$
Reflections collected	13426
Independent reflections	2908 [$R_{int} = 0.0431$, $R_{sigma} = 0.0319$]
Data/restraints/parameters	2908/0/240
Goodness-of-fit on F ²	1.071
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0367, wR_2 = 0.0981$
Final R indexes [all data]	$R_1 = 0.0449, wR_2 = 0.1034$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.20

Table S2. Crystal data and structure refinement for **2b**. CCDC number = 2381649

4. Photophysical Properties

Figure S3 Structure of BODIPYs 3, 2a, 4, 2b

Fable S3. Spectroscopic and	photophysical	properties of 3, 2a,	4, 2b in	different solvents.
------------------------------------	---------------	----------------------	----------	---------------------

Comment	Salvant	$\lambda_{\max}{}^a$	$\epsilon \ / \ 10^{5 \ b}$	$\lambda_{\rm em}^{\ c}$	SS ^d	${\Phi_{\mathrm{f}}}^{e}$	\mathbf{T}^{f}	K _r ^g	$K_{nr}{}^{h}$
Compound	Solvent	[nm]	[M ⁻¹ cm ⁻¹]	[nm]	[cm ⁻¹]	[%]	[ns]	$[10^8 \mathrm{S}^{-1}]$	[10 ⁸ S ⁻¹]
	DCM	501	0.718554	518	655	1.40	0.53	0.26	18.6
3	THF	501	0.601767	517	618	1.00	0.45	0.22	22.0
	TOL	504	0.612743	521	647	2.80	0.67	0.42	14.5
	DCM	507	0.631483	521	530	23.2	3.25	0.71	2.36
2a	THF	508	0.514545	521	491	23.5	3.15	0.75	2.43
	TOL	512	0.702364	528	592	31.0	3.68	0.84	1.88
	DCM	538	1.042260	554	537	47.5	4.17	1.14	1.26
4	THF	536	1.217043	553	574	44.2	3.82	1.16	1.46
	TOL	539	1.045912	556	567	58.8	4.62	1.27	0.89
	DCM	538	0.714180	560	730	53.7	5.28	1.02	0.88
2b	THF	538	1.048462	560	730	50.5	5.30	0.95	0.93
	TOL	543	0.842006	560	559	54.5	5.12	1.06	0.89

^{*a*} Absorption maxima (λmax). ^{*b*} Molar extinction coefficients (at λmax). ^{*c*} Emission maxima (λem).

^{*d*} Stokes shifts. ^{*e*} Fluorescence quantum yield (Φ_f). ^{*f*} Lifetime (τ). ^{*g*} Radiation rate constant. ^{*h*} Non-radiation rate constant. of **3**, **2a**, **4**, **2b** in different solvents.

UV-Vis absorption and fluorescence emission spectra of the same compound in different solvents at room temperature.

Figure S4. Room-temperature absorption spectra of compound 3 recorded in different solvents $(1 \times 10^{-5} \text{ mol/L})$.

Figure S5. Room-temperature emission spectra of compound 3 recorded in different solvents $(1 \times 10^{-6} \text{ mol/L})$.

Figure S6. Room-temperature normalized absorption and emission spectra of compound 3 recorded in different solvents.

Figure S7. Room-temperature absorption spectra of compound 2a recorded in different solvents (1×10⁻⁵ mol/L).

Figure S8. Room-temperature emission spectra of compound 2a recorded in different solvents (1×10⁻⁶ mol/L).

Figure S9. Room-temperature normalized absorption and emission spectra of compound 2a recorded in different solvents.

Figure S10. Room-temperature absorption spectra of compound 4 recorded in different solvents (1×10^{-5} mol/L).

Figure S11. Room-temperature emission spectra of compound 4 recorded in different solvents $(1 \times 10^{-6} \text{ mol/L})$.

Figure S12. Room-temperature normalized absorption and emission spectra of compound 4 recorded in different solvents.

Figure S13. Room-temperature absorption spectra of compound 2b recorded in different solvents (1×10^{-5} mol/L).

Figure S14. Room-temperature emission spectra of compound 2b recorded in different solvents

Figure S15. Room-temperature normalized absorption and emission spectra of compound 2b recorded in different solvents.

UV-Vis absorption and fluorescence emission spectra of different compounds in same solvents at room temperature.

Figure S16. Room-temperature absorption spectra of compounds 3, 2a, 4, 2b recorded in dichloromethane $(1 \times 10^{-5} \text{ mol/L})$.

Figure S17. Room-temperature emission spectra of compounds 3, 2a, 4, 2b recorded in dichloromethane $(1 \times 10^{-6} \text{ mol/L})$.

Figure S18. Room-temperature absorption spectra of compounds 3, 2a, 4, 2b recorded in tetrahydrofuran (1×10^{-5} mol/L).

Figure S19. Room-temperature emission spectra of compounds 3, 2a, 4, 2b recorded in tetrahydrofuran (1×10^{-6} mol/L).

Figure S20. Room-temperature absorption spectra of compounds 3, 2a, 4, 2b recorded in toluene $(1 \times 10^{-5} \text{ mol/L})$.

Figure S21. Room-temperature emission spectra of compounds 3, 2a, 4, 2b recorded in toluene $(1 \times 10^{-6} \text{ mol/L})$.

5. Electrochemical Data

Compound	E_{red}^{onset}	E_{ox}^{onset}	LUMO	НОМО	E_g^e	E_g^o
	(V)	(V)	(eV)	(eV)	(eV)	(eV)
3	-1.24	0.97	-3.56	-5.77	2.21	2.38
2a	-1.23	0.90	-3.57	-5.70	2.13	2.37
4	-1.50	0.58	-3.30	-5.38	2.08	2.22
2b	-1.47	0.58	-3.33	-5.38	2.05	2.20

Table S4. Electrochemical properties of 3, 2a, 4, 2b in dichloromethane at rt.

 E_{red}^{onset} = the onset reduction potentials; E_{ox}^{onset} = the onset oxidation potentials; LUMO= - (E_{red}^{onset} +4.8); HOMO= - (E_{ox}^{onset} +4.8); E_g^e = LUMO - HOMO; E_g^e = bandgap, obtained from the intercept of the electrochemical data; λ_{onset} = the onset of absorption in CH₂Cl₂ solution of **3**, **2a**, **4**, **2b**; E_g^o =1240/ λ_{onset} ; E_g^o = bandgap, obtained from the intercept of the absorption spectra.

Figure S22. Cyclic voltammograms of **Fc**, **3**, **2a**, **4** and **2b** in dichloromethane with 0.1 M *n*-Bu₄PF₆ as supporting electrolyte (scan rate: 50 mV s⁻¹).

Figure S23. Cyclic voltammograms of **3**, **2a**, **4** and **2b** in dichloromethane with 0.1 M *n*-Bu₄PF₆ as supporting electrolyte (scan rate: 50 mV s⁻¹).

Figure S24. Cyclic voltammograms (CV) and Differential Pulse Voltammetry (DPV) of **3** in dichloromethane with 0.1 M n-Bu₄PF₆ as supporting electrolyte (scan rate: 50 mV s⁻¹).

Figure S25. Cyclic voltammograms (CV) and Differential Pulse Voltammetry (DPV) of **2a** in dichloromethane with 0.1 M n-Bu₄PF₆ as supporting electrolyte (scan rate: 50 mV s⁻¹).

Figure S26. Cyclic voltammograms (CV) and Differential Pulse Voltammetry (DPV) of **4** in dichloromethane with 0.1 M n-Bu₄PF₆ as supporting electrolyte (scan rate: 50 mV s⁻¹).

Figure S27. Cyclic voltammograms (CV) and Differential Pulse Voltammetry (DPV) of **2b** in dichloromethane with 0.1 M n-Bu₄PF₆ as supporting electrolyte (scan rate: 50 mV s⁻¹).

6. DFT Calculations

Kohn-Sham density functional theory (DFT) has been employed to optimize the ground state geometries of the investigated complexes at the TPSSh^[9,10]/6-311+G(d, p) level. All the optimized geometries were tested to be local minima by frequency calculations at the same level. To get insight into the photophysical properties of the reported complexes, time-dependent density functional theory (TD-DFT) calculations using the TPSSh functional in conjunction with the 6-311+G(d, p) basis set have been performed. Several exchange correlation functionals were tested. It is found the TPSSh functional with 10% "exact" Hartree-Fock exchange component is an appropriate choice for the current calculations. NICS(0) values were also calculated at the TPSSh/6-311+G(d, p) level, where ring centers are located as ring critical points (RCPs) by topology analysis^[11]. The effect of the solvent was considered in all the calculations utilizing the integral equation formalism polarized continuum model (IEF-PCM^[12,13]) with the dichloromethane as solvent. All the quantum chemical calculations were performed using the Gaussian 16 software suit^[14]. The wavefunction analysis was calculated by means of the Multiwfn version 3.8(dev)^[15,16] code and plotted using VMD^[17] software.

Figure S28. Pictorial presentation of LUMO, HOMO and their energy levels for 3, 2a, 4, 2b.

Figure S29. NICS(0) values of rings in 3, 2a, 4, 2b.

31

rew(dienoromenanc)-11 551/0-511+6(d, p) level.						
Complexes	Sn	$\lambda_{max}(nm)$	E _{ex} (eV)	f	Major Contributions	
	S 1	424.94	2.9177	0.43090	$\mathrm{H} \rightarrow \mathrm{L} \; 91.9\% \mathrm{H}\text{-}2 \rightarrow \mathrm{L} \; 7.5\%$	
2	S 3	371.38	3.3385	0.18150	$H-1 \rightarrow L 98.2\%$	
3	S 4	257 66	2 1665	0 10120	$\text{H-3} \rightarrow \text{L} \ 71.6\% \text{H-2} \rightarrow \text{L} \ 21.8\% \text{H} \rightarrow$	
	54	357.00	3.4005	0.10120	L 6.1%	
	S 1	462.59	2.6802	0.31410	$\mathrm{H} \rightarrow \mathrm{L}~79.8\% \mathrm{H}\text{-}1 \rightarrow \mathrm{L}~19.4\%$	
2a	S 2	434.00	2.8568	0.17080	$\mathrm{H}\text{-}1 \rightarrow \mathrm{L}\ 77.8\% \mathrm{H} \rightarrow \mathrm{L}\ 19.0\%$	
	S 4	348.76	3.5550	0.25040	$H-3 \rightarrow L 90.2\%$	
	S 1	460.53	2.6922	0.51780	$\mathrm{H} \rightarrow \mathrm{L}\ 96.0\% \mathrm{H}\text{-}1 \rightarrow \mathrm{L}\ 5.1\%$	
4	S 2	363.92	3.4069	0.14270	$\text{H-1} \rightarrow \text{L 93.1\%} \text{H} \rightarrow \text{L 5.0\%}$	
	S 3	351.83	3.5240	0.24880	$\text{H-2} \rightarrow \text{L 84.5\%} \text{H-3} \rightarrow \text{L 11.5\%}$	
21	S 1	479.69	2.5847	0.49850	$H \rightarrow L 96.3\%$	
20	S 4	349.35	3.5490	0.24700	$H-3 \rightarrow L 82.2\%$ $H-2 \rightarrow L 9.3\%$	

Table S5. The excited state properties of complexes 3, 4, 2a, 2b calculated at the IEF-PCM(dichloromethane)-TPSSh/6-311+G(d, p) level.

Cartesian coordinates: (IEF-PCM-TPSSh/6-311+G(d, p))

-4.011456	0.750826	-0.946578
-2.618107	0.759491	-0.943805
-1.906750	0.000028	0.000010
-2.618102	-0.759464	0.943807
-4.011449	-0.750792	0.946594
-4.711160	0.000023	0.000014
-0.427365	0.000018	0.000013
0.277294	-1.214839	-0.059390
1.672141	-1.241441	-0.043251
2.602144	-0.000027	0.000005
1.672177	1.241417	0.043235
0.277329	1.214859	0.059404
	-4.011456 -2.618107 -1.906750 -2.618102 -4.011449 -4.711160 -0.427365 0.277294 1.672141 2.602144 1.672177 0.277329	-4.0114560.750826-2.6181070.759491-1.9067500.000028-2.618102-0.759464-4.011449-0.750792-4.7111600.000023-0.4273650.0000180.277294-1.2148391.672141-1.2414412.602144-0.0000271.6721771.2414170.2773291.214859

С	-0.181624	-2.550059	-0.190135
С	0.940980	-3.368719	-0.237285
С	2.062822	-2.526192	-0.148776
С	2.062902	2.526149	0.148812
С	0.941090	3.368725	0.237223
С	-0.181542	2.550103	0.190089
Н	-4.549813	1.328283	-1.690340
Н	-2.076257	1.329642	-1.690279
Н	-2.076244	-1.329636	1.690261
Н	-4.549801	-1.328260	1.690351
Н	-5.795880	0.000018	0.000014
Н	-1.215811	-2.851996	-0.253435
Н	0.967283	-4.443543	-0.333220
Н	3.111567	-2.785084	-0.165021
Н	3.111656	2.785003	0.165101
Н	0.967428	4.443552	0.333120
Н	-1.215717	2.852081	0.253367
F	3.418436	0.036184	-1.145479
F	3.418395	-0.036261	1.145501

43

4			
С	4.442498	-0.692650	-0.996041
С	3.048414	-0.694982	-0.993939
С	2.338474	-0.009109	0.004592
С	3.053266	0.672936	1.002318
С	4.447315	0.662023	1.003622
С	5.145426	-0.017583	0.003652
С	0.855424	-0.003898	0.006260
С	0.160964	1.214761	-0.008993
Ν	-1.234054	1.254881	0.010393
В	-2.157858	0.008932	0.034224
Ν	-1.244912	-1.244939	0.002533
С	0.150561	-1.216896	0.016651
С	0.630379	2.548683	-0.089838
С	-0.475719	3.389460	-0.107518
С	-1.621485	2.552362	-0.046254
С	-1.642969	-2.540367	0.037378
С	-0.504098	-3.387667	0.078290
С	0.609004	-2.555627	0.073343
Н	4.978805	-1.215545	-1.780829

Н	2.504260	-1.208070	-1.779427
Н	2.512603	1.189988	1.787634
Н	4.987288	1.181966	1.787854
Н	6.230268	-0.020927	0.003308
Н	1.668828	2.842240	-0.138704
Н	1.644965	-2.858861	0.114632
F	-3.017337	0.017306	-1.084387
F	-2.942143	0.008165	1.211576
С	-3.050826	2.979157	-0.071351
Н	-3.399119	3.091436	-1.104965
Н	-3.693389	2.251250	0.423536
Н	-3.161415	3.948777	0.420006
С	-0.491882	4.887280	-0.187264
Н	-1.009286	5.236279	-1.087364
Н	-1.004484	5.329473	0.674055
Н	0.526457	5.280574	-0.210383
С	-3.075443	-2.956253	0.008367
Н	-3.718616	-2.204331	0.465361
Н	-3.409474	-3.103773	-1.025623
Н	-3.202207	-3.905312	0.534173
С	-0.530537	-4.886963	0.119796
Н	-1.109630	-5.255230	0.973494
Н	-0.983679	-5.306026	-0.785228
Н	0.482611	-5.285417	0.203743
30			
2a			
С	-3.453625	2.178510	0.519340
С	-2.102259	1.903595	0.440662
С	-1.612514	0.620533	0.090025
С	-2.582123	-0.407494	-0.086424
С	-3.956729	-0.113743	-0.027134
С	-4.391056	1.168598	0.255346
С	-0.180958	0.374745	-0.025432
С	0.804773	1.395117	-0.166533
Ν	2.157339	1.059188	-0.066610
В	2.728934	-0.327082	0.324753
Ν	1.589171	-1.330931	0.030731
С	0.261960	-0.955790	-0.019364
С	0.735993	2.753426	-0.554965
С	2.044361	3.225869	-0.666516

С	2.890404	2.157665	-0.351185
С	1.642897	-2.685212	-0.057370
С	0.366870	-3.225529	-0.194587
С	-0.515906	-2.132464	-0.158060
S	-2.223038	-2.102902	-0.366567
Н	-3.785544	3.170677	0.802766
Н	-1.391072	2.676167	0.696379
Н	-4.675256	-0.911444	-0.183747
Н	-5.453661	1.377371	0.306204
Н	-0.158832	3.306026	-0.791885
Н	2.356454	4.217016	-0.959292
Н	3.969145	2.119546	-0.321881
Н	2.591153	-3.200041	-0.012597
Н	0.119519	-4.269219	-0.307503
F	3.865121	-0.625934	-0.441438
F	3.069761	-0.357290	1.694458
42			
2b			
С	2.555307	-3.695844	0.579668
С	1.456452	-2.858891	0.515595
С	1.559737	-1.500843	0.126548
С	2.874597	-1.004469	-0.094625
С	3.985668	-1.865847	-0.050682
С	3.829557	-3.204271	0.264038
С	0.369039	-0.656167	0.024699
С	-0.960170	-1.149906	-0.058915
Ν	-2.039539	-0.267969	0.071890
В	-1.946539	1.260778	0.320806
Ν	-0.470752	1.654962	0.090205
С	0.552229	0.733195	0.012010
С	-1.496632	-2.424140	-0.356383
С	-2.885646	-2.317531	-0.379338
С	-3.192238	-0.968374	-0.094702
С	0.075178	2.908855	0.013206
С	1.467926	2.822808	-0.153854
С	1.761916	1.447945	-0.141599
S	3.282087	0.677962	-0.403447
Н	2.428701	-4.726187	0.892077
Н	0.489465	-3.238880	0.812192
Н	4.974444	-1.462202	-0.242905

Н	4.696837	-3.853763	0.302165
Н	-0.935584	-3.315733	-0.588354
F	-2.777484	1.951091	-0.584817
F	-2.349553	1.578378	1.640373
С	-4.548468	-0.351565	0.007868
Н	-4.581925	0.408670	0.790171
Н	-4.833561	0.130079	-0.933838
Н	-5.289809	-1.121901	0.230211
С	-3.877134	-3.407445	-0.664409
Н	-4.568816	-3.550417	0.173123
Н	-4.481083	-3.182984	-1.550069
Н	-3.363979	-4.355554	-0.839416
С	-0.765521	4.138965	0.100861
Н	-1.300997	4.310497	-0.838515
Н	-1.512246	4.043761	0.892080
Н	-0.144379	5.012005	0.304605
С	2.445027	3.945782	-0.327560
Н	3.324199	3.803388	0.309060
Н	2.796282	4.014134	-1.363475
Н	1.996174	4.906094	-0.067211

7. ¹H, ¹³C, ¹⁹F NMR and HRMS spectra for all new compounds

¹H NMR specta of compound **1a** in CDCl₃ (400 MHz)

¹³C NMR Spectra of compound **1a** in CDCl₃ (101 MHz)

Elemental Composition Report

Tolerance = 100.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 60 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Minimum:	30.00				-1.5					
Maximum:	100.00		200.0	100.0	50.0			1.1.1		
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Formula -	1 Berla		
313.0839	100.00	313.0834	0.5	1.6	12.0	1	C15 H10	B N3	02	F2
							30. 5.7			

¹H NMR specta of compound **4** in CDCl₃ (400 MHz)

5011 2011 2011 2011 2011 2011 2011 2011	55	00
	-2	$\overset{2}{\searrow}_{1}^{2}$

¹³C NMR Spectra of compound **4** in CDCl₃ (101 MHz)

 $\begin{array}{c} -147. \ 67 \\ -147. \ 75 \\ -147. \ 84 \\ -147. \ 93 \end{array} ,$ -147.5 -148.0 fl (ppm) -147.0 -148.5 5 -20 -140 -160 f1 (ppm) -30 -40 -80 -220 -280 -60 -100 -120 -180 -200 -240 -260

Observed HRMS Spectra of compound 4

¹H NMR specta of compound **1-1b** in CDCl₃ (400 MHz)

¹³C NMR Spectra of compound **1-1b** in CDCl₃ (101 MHz)

¹H NMR specta of compound **1-2b** in CDCl₃ (400 MHz)

DEPT Spectra of compound 1-2b in CDCl₃ (101 MHz)

Observed HRMS Spectra of compound 1-2b

¹³C NMR Spectra of compound **1b** in CDCl₃ (101 MHz)

Observed HRMS Spectra of compound 1b

¹³C NMR Spectra of compound **2a** in CDCl₃ (101 MHz)

DEPT Spectra of compound 2a in CDCl₃ (101 MHz)

¹⁹F NMR Spectra of compound **2a** in CDCl₃ (376 MHz)

Observed HRMS Spectra of compound 2a

¹³C NMR Spectra of compound **2b** in CDCl₃ (101 MHz)

¹⁹F NMR Spectra of compound **2b** in CDCl₃ (376 MHz)

Observed HRMS Spectra of compound 2b

8. References

[1] Li X.; Zheng Z.; Jiang W.; Wu W.; Wang Z.; Tian H. New D–A–π–A organic sensitizers for efficient dye-sensitized solar cells, *Chem. Comm.* **2015**, *51*, 3590.

[2] Cai, K.; Xie, J.; Zhao, D. NIR J-aggregates of hydroazaheptacene tetraimides. *J. Am. Chem. Soc.*, **2014**, *136*, 28.

[3] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*2009, *42*, 339.

[4] Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. *Acta Cryst.* **2015**, *A71*, 59.

[5] Sheldrick G. M. Crystal structure refinement with ShelXL, *Acta Cryst.* 2015, *C71*,3.

[6] Farfán-Paredes M.; González-Antonio O.; Tahuilan-Anguiano D. E.; Peón J.; Ariza A.; Lacroix P. G.; Santillan R.; Farfán N. Physicochemical and computational insight of ¹⁹F NMR and emission properties of *meso-(o-aryl)-BODIPYs. New J. Chem.* 2020, 44, 19459.

[7] Li J.; Xue N.; Gao S.; Yang Y.; Weng Z.; Ju H.; Wang Z.; Li X.; Jiang W. Dithiofused boron dipyrromethenes: synthesis and impact of S-heteroaromatic annulation mode. *Org. Lett.*, **2024**, *26*, 5472.

[8] Doulain P.-E.; Goze C.; Bodio E.; Richard P.; Decréau R. A. BODIPY atropisomer interconversion, face discrimination, and superstructure appending. *Chem. Commun.*2016, 52, 4474.

[9] Tao J.; Perdew J. P.; Staroverov V. N.; Scuseria G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. *Phys. Rev. Lett.* **2003**, *91*, 146401.

[10] Staroverov V. N.; Scuseria G. E.; Tao J.; Perdew J. P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. *J.*

Chem. Phys. 2003, 119, 12129.

[11] Feixas F.; Matito E.; Poater J.; Solà M. Metalloaromaticity. WIREs Comput. Mol.Sci. 2013, 3, 105.

[12]Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. *J. Chem. Phys.* **1997**, *107*, 3032.

[13]Mennucci B.; Cancès E.; Tomasi J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. *J. Phys. Chem. B* **1997**, *101*, 10506.

[14]Frisch M. J.; Trucks G; W.; Schlegel H. B.; et al. *Gaussian 16 Rev. A.03*; Wallingford, CT; Gaussian, Inc; 2016.

[15]Zhang J.; Lu T. Efficient evaluation of electrostatic potential with computerized optimized code. *Phys. Chem. Chem. Phys.* **2021**, *23*, 20323.

[16] Lu T.; Chen F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580.

[17]Humphrey W.; Dalke A.; Schulten K. VMD: visual molecular dynamics. *J. Mol. Graph.* **1996**, *14*, 33.