Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Theoretical Investigation of N and O Coordination Effects on the Bifunctional

Oxygen Electrode Activity of Co-Based Single-Atom Catalysts

Linlin Zhang^{1‡*}, Nan Chen^{2‡}, Hongbo Wu³, Zhen Gao⁴, Yanning Wang¹, Kai Xiong⁵

¹Department of Physics, Mathematics and Computer Science, Kunming Medical University, Kunming, China.

²Ministry of Education School of Microelectronics, Southern University of Science and Technology, Shen Zhen, China.

³School of Science, Yangzhou Polytechnic Institute, Yangzhou 225127, People's Republic of China ⁴School of Physics and Astronomy, Yunnan University, Kunming 650091, China.

⁵Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, China

*Corresponding author email: ynuzll@163.com

[‡]These authors contributed equally to this work.

Computational contents

(1) Formation Energy (E_f) and Dissolution Potential (U_{diss})

To evaluate the thermodynamic and electrochemical stability of the catalysts, the formation energy (E_f) and dissolution potential (U_{diss}) were calculated using equations (1) and (2):

$$E_{f}$$

$$= E_{Co-N-C-gra} + y\mu_{C} - \left(E_{graphene} + x\mu_{N} + (4-x)\mu_{0} + \mu_{Co}\right)$$
(1)
$$U_{diss}$$

$$= U_{diss}^{0} (metal, bulk) - E_{f}/n$$
(2)

Here, $E_{Co-N-C-gra}$ and $E_{graphene}$ represent the total energies of the optimized Co–N–C structure and the 4×4×1 graphene supercell, respectively. μ_C , μ_N , μ_0 and μ_{Co} refer to the energies of a single C atom (from the 4×4×1 graphene supercell), half of an N₂ molecule, half of an O₂ molecule, and an isolated Co atom, respectively. The variables x and y denote the number of C and N atoms removed from pristine graphene. A more negative E_f indicates greater structural stability. U_{diss}^{0} (*metal,bulk*) is the standard dissolution potential of bulk Co metal, and n is the number of electrons transferred per Co atom during dissolution.

(2) Adsorption Energy (ΔE_{ads}) \circ

The adsorption energy ΔE_{ads} of an intermediate were defined by equation (3):

$$\Delta E_{ads} = E_{*m} - E_{Co-N-C-Gra} - E_m \tag{3}$$

Here, E_{*m} represents the total energy of the Co–N–O–graphene system after adsorbing intermediate m, and E_m is the total energy of the isolated intermediate m. A negative ΔE_{ads} indicates that the catalyst can effectively adsorb and activate the reactant.

(3) Gibbs Free Energy Change (ΔG) •

The Gibbs free energy change ΔG for each reaction step is calculated using equation (4):

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{II} + \Delta G_{PH}$$
⁽⁴⁾

Where $\Delta E_{,}\Delta ZPE$ and ΔS are the energy difference, zero-point energy correction, and entropy change at 298.15 K, respectively. $\Delta G_U = -neU$, where n is the number of transferred electrons and U is the electrode potential. $\Delta GpH = K_BT \times ln10 \times pH$, where K_B is the Boltzmann constant; in this work, the pH value was defined to be 0 for acidic medium.

Under acidic conditions, the four-electron ORR pathway can be described by equations (5)–(8), while the OER is the reverse of the ORR:

$$O_2 + * + H^+ + e^- \to * 00H \tag{5}$$

$$* 00H + H^{+} + e^{-} \rightarrow * 0 + H_2 0$$
 (6)

$$* 0 + H^{+} + e^{-} \rightarrow * 0H \tag{7}$$

$$* 0H + H^+ + e^- \rightarrow * + H_2 0 \tag{8}$$

Here, * represents the adsorption site on the catalyst. Under acidic conditions, the overpotential (η) for ORR and OER can be calculated using equation (9):

$$\eta^{O \ R \ R})(\ / \ O \ E)R = ([\Delta G_1, \Delta G_1, \Delta G_1, \Delta G_1]^m \ a/e \pm 1 \ . \ \mathbb{X} \ 3$$

(4) Adsorption Free Energy(ΔG_{ads})

The adsorption free energies of *OOH \cdot *Oand *OH($^{\Delta G_{ads}}$)are calculated by equations (10)–(12):

$$\begin{aligned} & \Delta G_{*00H} \\ &= G_{*00H} - G_{Co-N-C-gra} - (2G_{H_20} - 3/2G_{H_2}) \end{aligned} \tag{10} \\ & \Delta G_{*0} \\ &= G_{*0} - G_{Co-N-C-gra} - (G_{H_20} - G_{H_2}) \\ & \Delta G_{*0H} = G_{*0H} - G_{Co-N-C-gra} - (G_{H_20} - 1/2G_{H_2}) \end{aligned} \tag{12}$$

Here, G_{*OOH} , G_{*O} , and G_{*OH} are the Gibbs free energies of the systems with adsorbed OOH, O, and OH, respectively. G_{H_2O} and G_{H_2} represent the Gibbs free energies of isolated H₂O and H₂ molecules. $G_{CO-N-C-gra}$ denotes the Gibbs free energy of the graphene catalyst substrate with various N/O coordination doping concentrations.

	CoN ₄ - Gra	CoN ₃ O- Gra	CoN ₂ O ₂ -p- Gra	CoN2O2-h- Gra	CoN2O2-0- Gra	CoN ₁ O ₃ - Gra	CoO ₄ - Gra
E _f	-3.90	-4.35	-3.91	-4.08	-4.00	-3.60	-3.25
U _{diss}	1.67	1.90	1.68	1.76	1.72	1.52	1.34

Table S1 Formation energies (E_f , eV) and dissolution potentials (U_{diss} ,V) for Co–N–O-Gra.

•

Figure S1 Charge density difference for Co–N–O-Gra.

Structure	Bader Charge(e)
CoN_4	0.68
CoN_3O_1	0.60
CoN ₂ O ₂ -pen	0.63
CoN ₂ O ₂ -hex	0.63
CoN ₂ O ₂ -oppo	0.61
CoN_1O_3	0.64
CoN_0O_4	0.7

 Table S2
 The Bader charges of Co single atom in Co–N–O-Gra..

CoN ₄ O ₀ -Gra	*O ₂		*OOH	*0	*OH	
	End-on	Side-on		0		
Тор						
Side	00-00-00	00-00	00-00-00	00-00-00	00-00-00	
CoN ₃ O ₁ -Gra	End-on	² O ₂ Side-on	*OOH	*O	*OH	
Тор						
Side	00-00-00	00-00-00	00-00-00	00-00-00	000000	

Table S3 The optimal adsorption configurations of O_2^* , OOH*, O* and OH* on Co–N–O-Gra.

CoN ₂ O ₂ -o-	*O ₂		*ООН	*0	*ОН
Gra	End-on	Side-on			
Тор					
Side	000000	00-00	000000	0000000	000000
CoN ₁ O ₃ -Gra	* End-on	*O ₂ Side-on	*OOH	*O	*OH
Тор					

Stunatura	O ₂ bon	d (Å)	
Structure	Before	After	$\mathbf{u}_{\mathbf{C0}}$ -O(A)
CoN_4	1.23	1.29	1.87
CoN_3O_1	1.23	1.29	1.93
CoN ₂ O ₂ -pen	1.23	1.31	1.82
CoN ₂ O ₂ -hex	1.23	1.30	1.88
CoN ₂ O ₂ -oppo	1.23	1.30	1.96
CoN_1O_3	1.23	1.31	1.75
CoN_0O_4	1.23	1.39	1.78

Table S4 The O–O bond lengths before and after O_2 adsorption, and the Co–O bond lengths (d_{Co-O} , Å) after $*O_2$ adsorbed on Co-N-O-gra.

	$\Delta E * O2$ (side on)	$\Delta E*_{O2(end \ on)}$	∆Е∗оон	ΔE*o	ΔЕ∗он
CoN4	-0.24	-0.36	-0.68	-4.54	-2.37
CoN ₃ O	-0.35	-0.44	-0.86	-4.84	-2.22
CoN ₂ O ₂ -p	-0.44	-1.02	-1.18	-5.70	-2.66
CoN ₂ O ₂ -h	-0.46	-1.05	-0.77	-5.46	-2.28
CoN ₂ O ₂ -o	-0.46	-1.20	-1.17	-5.68	-2.69
CoNO ₃	-0.96	-1.75	-1.80	-6.36	-3.41
CoO_4	-2.23	-2.23	-2.07	-11.10	-3.76

Table S5 Adsorption energy $\Delta E_{ads}\,(eV)$ of reactive species on Co-N-O-gra.

Figure S2 Projected density of states (PDOS) for O2 adsorption on Co-N-O-Gra.

Structure	$\Delta G_{^{*}OH}$	$\Delta G \ast_O$	ΔG_{*OOH}
CoN4	1.07	2.83	4.31
CoN ₃ O	1.22	2.53	4.13
CoN ₂ O ₂ -p	0.78	1.67	3.81
CoN ₂ O ₂ -h	0.76	1.68	3.83
CoN ₂ O ₂ -o	0.75	1.69	3.83
CoNO ₃	0.03	1.01	3.19
CoO_4	-0.33	0.43	2.92

Table S6 Adsorption free energies of intermediates *OH, *O, and *OOH on various Co-N-O-gra structures (eV).

Table S7 Free energy changes of ΔG_x (x=1-4, eV) and overpotential (η , V) of ORR/OER on Co-N-

O-gra.

Structure		ΔG_1	ΔG_2	ΔG_3	ΔG_4	η
CoN4	OER	1.07	1.76	1.48	0.61	0.52
	ORR	-0.61	-1.48	-1.76	-1.07	0.62
CoN ₃ O	OER	1.22	1.31	1.60	0.79	0.37
	ORR	-0.79	-1.60	-1.31	-1.22	0.44
CoN ₂ O ₂ -p	OER	0.78	0.89	2.14	1.11	0.91
	ORR	-1.11	-2.14	-0.89	-0.78	0.45
CoN ₂ O ₂ -h	OER	0.76	0.92	2.15	1.09	0.92
	ORR	-1.09	-2.15	-0.92	-0.76	0.47
CoN_2O_2 -o	OER	0.75	0.94	2.14	1.09	0.90
	ORR	-1.09	-2.14	-0.94	-0.75	0.48
$CoNO_3$	OER	0.03	0.98	2.18	1.73	0.95
	ORR	-1.73	-2.18	-0.98	-0.03	1.20
CoO_4	OER	-0.33	0.76	2.49	2	1.25
	ORR	-2	-2.49	-0.76	0.33	1.56

Figure S3 Bader charge, Charge density difference for O adsorption on Co-N-O-Gra.

Figure S4 Projected density of states (PDOS) for O adsorption on Co-N-O-Gra.