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Adsorption equations

Adsorption kinetics. The iodine adsorption kinetics of the H-PC were
scrutinized using the pseudo-first-order kinetic model (Eq. S1), the pseudo-
second-order kinetic model (Eq. S2), and the intra-particle diffusion model
(Eq. S3). The adsorption parameters were calculated to examine the kinetic

behavior of the adsorbed iodine:
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Where ¢, (mg/g) represented the equilibrium adsorption capacity, ¢,
(mg/g) denoted the adsorption amount at time ¢, ¢ (min) signified the
contact time and k; (min!) stood for the pseudo-first-order kinetic rate
constant. Additionally, k, (g/mg-min) was the pseudo-second-order kinetic
rate constant, and k; (mg/g'min’'?) indicated the internal diffusion rate
constant of the particles.

Adsorption isotherms. Langmuir, Freundlich, and Dubinin-
Radushkevich (D-R) adsorption isotherm were employed to analyze the
adsorption data, and the relevant adsorption parameters were calculated.

The linear expressions for these isotherms were outlined below:
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Where C, (mg/L) represented the equilibrium concentration of iodine, ¢,
(mg/g) signified the adsorption capacity at equilibrium, ¢, (mg/g)
indicated the maximum adsorption capacity corresponding to complete
monolayer coverage, K; (L/mg) represented the adsorption constant based
on the Langmuir model, and K ((mg/g)(L/mg)'") was the constant for
adsorption based on the Freundlich model. Additionally, ¢, (mg/g) stood
for the theoretical isothermal saturation capacity, f (mol?/kJ?) was the D-R
isotherm constant, € was the Polanyi adsorption potential.

Adsorption thermodynamics. The adsorption experiments were
conducted across a range of temperatures from 288.15K to 328.15K. The
thermodynamic parameters, including the change in enthalpy (AHO),
change in free energy (AGY), and change in entropy (AS?), were calculated
using Gibbs-Helmholtz and Van't Hoff equations, applying fundamental

thermodynamic principles.
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Where Q. (mg/g) and C. (mg/L) represented the adsorption capacity

and concentration at equilibrium, respectively. Ky is the thermodynamic



equilibrium constant, R is the gas constant of 8.314 (J mol™! K), and T (K)
is the thermodynamic temperature. The values of AH® and AS° were

determined from the intercept and slope of Fig. 4D.



Fe,0, NPs - _ PDA@Fe,0,

Pl B

Fig. S1. The color of Fe,0O5; and PDA@Fe,0;, respectively.
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Fig. S2. FT-IR spectra of dopamine and PDA@Fe,0;.
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Fig. S4. The magnetization curves of M-PC and BM-PC.
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Fig. S5. The water contact angle of PDA@Fe,0;.
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Fig. S6. The zeta potentials of Fe,0;, PDA@Fe,05, and H-PC, respectively.
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Fig. S7. XPS survey spectrum of H-PC.
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Fig. S8. High-resolution XPS spectrum of C 1s for H-PC.
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Fig. S9. The effects of pH on iodine adsorption by H-PC (A), BM-PC (B). Experimental conditions:

[I57] = 1500 mg/L, pH = 2~9, T = 25 °C. Error bars represent standard deviation of triplicate
measurements.
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Fig. S10. Effects of coexisting ions on iodine adsorption by H-PC. Experimental conditions: [I57] =

1500 mg/L, [H-PC]=0.3 g/L, pH="7, T =25 °C. Error bars represent standard deviation of triplicate
measurements.
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Fig. S11. TGA curves of H-PC before and after the adsorption of iodine (H-PC@]5").
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Fig. S12. Adsorption of iodine on H-PC adsorbents as a function of time. Experimental conditions:
[I57] = 50~200 mg/L, [H-PC] = 0.3 g/L, pH =7, T =25 °C. Error bars represent standard deviation
of triplicate measurements.
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Fig. S13. Corresponding fitted data by Freundlich (A) and D-R isotherm models (B). Experimental
conditions: [I37] = 1500 mg/L, [H-PC]=0.3 g/L, pH="7, T =15~35 °C. Error bars represent standard

deviation of triplicate measurements.
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Fig. S14. Iodine adsorption capacity and pseudo-second-order kinetic adsorption rate constant of
different absorbents.
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Fig. S15. The FT-IR spectra of H-PC before and after the adsorption of iodine (H-PC@]I5).
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Fig. S16. Zeta potentials of H-PC (A) and BM-PC (B) at different pHs.
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Fig. S17. Application of BM-PC in simulated seawater: (A) schematic diagram of the process, (B)
adsorption of iodine on BM-PC adsorbents as a function of time. Experimental conditions: [I5] =

50 mg/L, [BM-PC] =5 g/L, pH =7, T =25 °C. Error bars represent standard deviation of triplicate
measurements.



Table S1. Kinetics parameters of iodine adsorption on H-PC and PC. Experimental conditions: [I57]

= 1500 mg/L, [H-PC]=0.3 g/L, pH=7, T = 25 °C.

Equations Parameters H-PC PC
Getexpy (ML) 945.97 318.27
Qe(cal) (ME/L) 639.33 205.81
Pseudo-first-order k; (min!) 0.03 0.03
R? 0.9751 0.8777
Qe(cal) (ME/L) 1016.53 344 .82
Pseudo-second-order k, (g'mg' min') 9.8*%10 2.9 E-05

R? 0.9987 0.9974




Table S2. Parameters for Langmuir, Freundlich and D-R models of iodine adsorption on H-PC.
Experimental conditions: [I5] = 50~1500 mg/L, [H-PC]=0.3 g/L, pH=7, T = 15~25 °C.

) Temperature
Equations Parameters
15°C 25°C 35°C
Qm(exp) (ME/g) 809.32 939.22 973.93
Qm(cat) (ME/g) 819.67 927.00 971.10
Langmuir isotherm K. (L/mg) 0.0045 0.0047 0.0050
R? 0.9955 0.9993 0.9996
K ((mg/g)(L/mg)''™) 44.49 47.77 54.65
Freundlich isotherm n 2.5553 24213 2.4902
R? 0.9392 0.9199 0.9220
B 0.0327 0.0341 0.0320
. gs (mg/g) 653.93 822.72 868.66
D-R isotherm
E (kJ/mol) 3.9103 3.8192 3.9528

R? 0.9155 0.9368 0.9348




Table S3. Thermodynamic parameters for the adsorption of iodine on H-PC at 200 and 300 mg/L.
Experimental conditions: [I5-] = 200~300 mg/L, [H-PC]=0.3 g/L, pH="7, T = 15~55 °C.

Initial concentration T AH® AS° AG°
of iodine (K) (kJ mol™) (Jmol ' K1) (kJ mol™)

288.15 -2.80

298.15 -3.60

200 ppm 308.15 14.80 61.70 -4.19

318.15 -4.91

328.15 -5.61

288.15 -1.88

298.15 -2.48

300 ppm 308.15 15.85 61.54 -3.10

318.15 -3.79

328.15 -4.31




Table S4. Comparative evaluation of iodine adsorption by H-PC and other adsorbents.

Adsorbent Adsjorption ko ) E‘quilibr‘ium Reference
capacity (mg/g) (g/mg-min) time (mins)
H-PC 945.97 9.8x104 60 This work
PC 318.27 2.9%x10°3 60 This work
n-CF@OCDs 190.10 — 20 1
Fe;04@APC 844.60 2.9x104 90 2
Cu-BTC@ )
PES 260.28 3.3x10°° 480 3
PS/50 %Fe-
MOF 123.00 1.2x10°3 — 4
CNTs 467.38 7.7x107 420 5
UiO-66-NH, 248.05 4.6x104 — 6
PBs-SOF 388.39 1.6x107 30 7
UA-DT 387.59 5.0x104 — 8
PTIBBL 370.74 8.1x10* 390 9
Bi;s/Al- .
DMAPS 215.70 1.2x1073 — 10
I3CA-POP 760.00 5.6x104 30 11
Zn(ttr)(OAc) 846.11 2.0x104 660 12
PHCP-4 416.67 3.5%x1073 120 13
HCPs-TBP 235.85 2.4x104 — 14
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