Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

A fluorescent sensor utilizing quinoline-functionalized UiO-66 for the

detection and removal of zinc ions from aqueous solutions

Yiying Xiong[#], Ying Yang[#], Xue Li, Jing Feng, Yingming Mao, Yuanyuan Zhang*

School of Environmental and Chemical Engineering, Jiangsu Ocean University,

Lianyungang, 222005, P. R. China

[#]These authors contributed equally to this work.

*Corresponding author

E-mail addresses: zhangyy@jou.edu.cn (Y. Zhang)

Fig. S1. N₂ adsorption-desorption pore size distribution.

Fig. S2. Fluorescence changes of UiO-66-AQ suspension with added Zn(II) after long-term storage.

Fig. S3. Changes in fluorescence intensity before and after the addition of Zn(II) under 375nm ultraviolet lamp.

Fig. S4. Linear regression of the emission intensity of fluorescence at 423 nm with [Zn(II)] at 25 $^{\circ}\mathrm{C}.$

Fig. S5. I/I₀ plots of UiO-66-AQ (0.1 mg/mL) in the presence of mono and binary ion systems (25 $^{\circ}C).$

Fig. S6. Effect of pH on the adsorbed amount of Zn(II).

Fig. S7. EDS mapping analyzes of (a) UiO-66-AQ and (b) UiO-66-AQ/Zn.

Fig. S8. Energy dispersive X-ray spectra of (a) UiO-66-AQ and (b) UiO-66-AQ/Zn.

Fig. S9. FTIR spectra of UiO-66-AQ before and after adsorption of Zn(II)

Fig. S10. Zn 2p XPS spectrum of UiO-66-AQ after adsorption of Zn(II).

Sample	Specific surface area (m ² /g)	Pore volume (mL/g)	Aperture diameter (nm)
UiO-66-NH ₂	796	0.539	2.68
UiO-66-AQ	401	0.466	2.38

Table S1. UiO-66-NH₂ and UiO-66-AQ pore structure parameters

Table S2. Fitting parameters of adsorption kinetics model

Model	Parameter	UiO-66-NH ₂	UiO-66-AQ
	$k_1(1/min)$	0.0299	0.0140
Pseudo-first-order	$Q_e(mg/g)$	16.0801	30.2606
	R ²	0.9486	0.9766
	$K_2(mg/(g \cdot min^{1/2}))$	0.0022	5.1388
Pseudo-second-order	$Q_e(mg/g)$	18.00	34.4341
	R ²	0.9886	0.9885
	$\alpha (mg/(g \bullet min))$	2.0223	1.1288
Elovich	β (g/mg)	0.3209	0.1358
	\mathbb{R}^2	0.9809	0.9874

Table S3. Fitting parameters of Diffusion model in particles

Sample	$\begin{array}{c} k_{d1} \\ (mg/(g \cdot min^{1/2})) \end{array}$	R ²	k_{d2} (mg/(g·min ^{1/2}))	R ²	k_{d3} (mg/(g·min ^{1/2}))	R ²
UiO-66-NH ₂	2.55	0.913	1.01	0.989	0.0156	0.857
UiO-66-AQ	3.42	0.998	2.30	0.996	0.120	0.940

Model	Parameter	UiO-66-NH ₂	UiO-66-AQ
	Q _{max} (mg/g)	35.74	49.82
Langmuir	K _L (L/mg)	0.01391	0.0278
	\mathbb{R}^2	0.9966	0.9956
Freundlich	$K_{\rm F} ({\rm mg/g})$	2.8511	7.2555
	1/n	0.4682	0.3303
	\mathbb{R}^2	0.9523	0.9575
Temkin	A (mg/L)	0.1131	0.2744
	В	10.4117	10.1026
	\mathbb{R}^2	0.9847	0.9729
D-R	Q _{max} (mg/g)	28.9651	35.4773
	β (mol ² /KJ ²)×10 ⁻³	951.928	444.4528
	\mathbb{R}^2	0.8771	0.84592

Table S4. Fitting parameters of Langmuir, Freundlich, Temkin and D-R isothermal

adsorption models

Table S5. R-P isotherm model parameters for adsorption of Zn(II) UiO-66-NH₂ and UiO-66-

AQ

Parameter	UiO-66-NH ₂	UiO-66-AQ
K _{RP}	0.60829	1.3993
$\alpha_{RP} (L/mg)^{\gamma}$	0.01419	0.0385
γ	0.9974	0.9563
\mathbb{R}^2	0.9966	0.9956