Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Electronic Supplementary Information for

Upcycling red brick into a superior monolithic hydrogen evolution electrocatalyst

Zhengguo Zhang,^{*a,b} Yiming Li,^c Jiao Zhang,^c Yaoyao Zhao,^{a,b} Mengjuan Xu,^{a,b} Fang

Wang,^{a,b} and Shixiong Min^{*a,b,c}

^a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.

^b Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.

^c Analysis and Testing Center of Ningxia Hui Autonomous Region, North Minzu University, Yinchuan, 750021, P. R. China.

**Corresponding authors: zhangzhengguo1119@126.com; sxmin@nun.edu.cn.*

Fig. S1 (a) Photographs of Fe@N-CNTs/RB electrode. (b) SEM image showing the overall view of Fe@N-CNTs/RB electrode, where the inset shows the electrolyte contact angel on Fe@N-CNTs/RB electrode. (c) side-view, (d) Top-view, and (e) high-resolution SEM images of Fe@N-CNTs/RB.

S2

Fig. S2 Medium-magnification SEM images of Fe@N, P-CNTs/RB electrode.

Fig. S3 (a) Compression-strain curve and (b) the photograph of Fe@N, P-CNTs/RB electrode after mechanical strength test.

Fig. S4 (a) TEM and (b) HRTEM images of RB. (c) HAADF-STEM image of RB

and the corresponding EDX mappings.

Fig. S5 XPS survey spectra of RB, Fe@N-CNTs/RB, and Fe@N, P-CNTs/RB

electrodes.

Fig. S6 (a) N₂ adsorption-desorption isotherms and (b) pore size distributions of RB, Fe@N-CNTs/RB, and Fe@N, P-CNTs/RB electrodes.

Catalyst	η_{10} (mV)	η_{100} (mV)	Reference
Ru-Fe-O _x /CC	32	90	[1]
Fe-(NiS ₂ /MoS ₂)/CNT	98	194	[2]
Fe ₇ S ₈ /C	90.6	-	[3]
Mo-Fe(1/1)-Se-CP	86.9	158.5	[4]
CoFe@NDC@MoS ₂	64	-	[5]
CoS ₂ /FeS ₂ /CN	76.5	218.5	[6]
FeP/Fe@NC	49	130	[7]
Pt ₃ Fe/NMCS-A	13	-	[8]
Ir-SA@Fe@NCNT	26	-	[9]
Fe-Ni ₃ S ₂ @FeNi ₃ -8	48	-	[10]
Fe _{0.5} Co _{0.5} P/CC	37	-	[11]
FeP/C-450	51.1	100.5	[12]
3% Ni _{0.5} Fe _{0.5} Se ₂ /MWCNT	200	-	[13]
Fe/P/C _{0.5} -800	256	-	[14]
CW-CNT@N-C-NiFe	179	275	[15]
FePSe ₃ /NC	70	150	[16]
FeP NPs@NPC	130	234	[17]
FeP/CC	34	75	[18]
Fe&FeP@gl-C-15	92	-	[19]
FeP/CC	-	108	[20]
FeP-GS	123	-	[21]
Fe@N, P-CNTs/RB	223.6	285.6	This work

 Table S1 Comparison of electrocatalytic HER performance of Fe@N, P-CNTs/RB

with previously reported Fe-based electrocatalysts in acidic solution.

Fig. S7 CV curves of (a) Fe@N-CNTs/RB and (b) Fe@N, P-CNTs/RB monolithic

electrodes at different scan rates in $0.5 \text{ M H}_2\text{SO}_4$ solution.

Fig. S8 XRD pattern of the Fe@N, P-CNTs/RB monolithic electrode after long-

term HER stability test.

Fig. S9 (a) XPS survey, (b) C 1s, (c) P 2p, and (d) Fe 2p spectra of Fe@N, P-

CNTs/RB monolithic electrode after long-term HER stability test.

References

- M. Shang, B. Zhou, H. Qiu, Y. Gong, L. Xin, W. Xiao, G. Xu, C. Dai, H. Zhang, Z. Wu and L. Wang, J. Colloid Interface Sci., 2024, 669, 856-863.
- C. Li, M. Liu, H. Ding, L. He, E. Wang, B. Wang, S. Fan and K. Liu, J. Mater. Chem. A, 2020, 8, 17527-17536.
- D. Kim, S. Surendran, S. Im, J. Lim, K. Jin, K. T. Nam and U. Sim, Aggregate, 2023, 5, e444.
- Y. Chen, J. Zhang, P. Guo, H. Liu, Z. Wang, M. Liu, T. Zhang, S. Wang, Y. Zhou,
 X. Lu and J. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 27787-27794.

- S. A. Shah, L. Xu, R. Sayyar, T. Bian, Z. Liu, A. Yuan, X. Shen, I. Khan, A. A. Tahir and H. Ullah, *Chem. Eng. J.*, 2022, **428**, 132126.
- B. Yang, J. Xu, D. Bin, J. Wang, J. Zhao, Y. Liu, B. Li, X. Fang, Y. Liu, L. Qiao,
 L. Liu and B. Liu, *Appl. Catal. B Environ.*, 2021, 283, 119583.
- X. Wang, W. Ma, Z. Xu, H. Wang, W. Fan, X. Zong and C. Li, *Nano Energy*, 2018, 48, 500-509.
- 8. P. Kuang, Z. Ni, B. Zhu, Y. Lin and J. Yu, Adv. Mater., 2023, 35, 2303030.
- F. Luo, H. Hu, X. Zhao, Z. Yang, Q. Zhang, J. Xu, T. Kaneko, Y. Yoshida, C. Zhu and W. Cai, *Nano Lett.*, 2020, 20, 2120-2128.
- W. Zhang, Q. Jia, H. Liang, L. Cui, D. Wei and J. Liu, *Chem. Eng. J.*, 2020, **396**, 125315.
- C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A. M. Asiri, X. Sun, J. Wang and L. Chen, *Nano Lett.*, 2016, 16, 6617-6621.
- F. X. Ma, C. Y. Xu, F. Lyu, B. Song, S. C. Sun, Y. Y. Li, J. Lu and L. Zhen, *Adv. Sci.*, 2018, 6, 1801490.
- D. Balaji, P. Arunachalam, K. Duraimurugan, J. Madhavan, J. Theerthagiri, A. M. Al-Mayouf and M. Y. Choi, *Int. J. Hydrogen Energy*, 2020, 45, 7838-7847.
- M. Li, T. Liu, X. Bo, M. Zhou, L. Guo and S. Guo, *Nano Energy*, 2017, **33**, 221-228.
- Y. Li, T. Gao, Y. Yao, Z. Liu, Y. Kuang, C. Chen, J. Song, S. Xu, E. M. Hitz, B. Liu, R. J. Jacob, M. R. Zachariah, G. Wang and L. Hu, *Adv. Energy Mater.*, 2018, 8, 1801289.

- J. Yu, W. J. Li, H. Zhang, F. Zhou, R. Li, C. Y. Xu, L. Zhou, H. Zhong and J. Wang, *Nano Energy*, 2019, 57, 222-229.
- Z. Pu, I. S. Amiinu, C. Zhang, M. Wang, Z. Kou and S. Mu, *Nanoscale*, 2017, 9, 3555-3560.
- X. Yang, A. Y. Lu, Y. Zhu, S. Min, M. N. Hedhili, Y. Han, K. W. Huang and L. J. Li, *Nanoscale*, 2015, 7, 10974-10981.
- 19. Q. Wang, Z. Fei, D. Shen, C. Cheng and P. J. Dyson, Small, 2024, 20, 2309830.
- 20. J. Tian, Q. Liu, Y. Liang, Z. Xing, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 20579-20584.
- Z. Zhang, B. Lu, J. Hao, W. Yang and J. Tang, *Chem. Commun.*, 2014, **50**, 11554-11557.