Supplementary Information 2,3-diphenyl-5,6,7,8-tetrahydroquinoxaline based potential optical chemosensor for detection of Ni²⁺ ions: Anticancer activity and biosensor imaging Srishti Dutta,^a Dishen Kumar,^a Abhilash Pandey,^a Sounik Manna,^b Sujata Maiti Choudhury,^b Devanand Sahu,^a Vanshika Sharma,^a Niraj Kumari,^a and Goutam Kumar Patra^a* ^aDepartment of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G) ^bBiochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University (W.B.) Fig. S1. ¹H-NMR spectra of L in CDCl₃ Fig. S2. ¹³C-NMR spectra of L in CDCl₃ Fig. S3. FTIR spectra of L Fig. S4. Mass spectra of L Fig. S5. Molecular electrostatic potential of L **Fig. S6.** 2D fingerprint plots of ligand L: (a) standard full and (b) resolved into $C \cdots C$ and (c) resolved into $H \cdots H$ (d) $N \cdots H$ contacts, showing the percentages of contacts contributing to the total Hirshfeld surface area of the molecule. Fig. S7. Detection limit for Ni²⁺ from absorption titration spectra in CH₃OH-H₂O (1:1). Fig. S8. Effect of pH (from range 2-13) on L in absorbance spectroscopy Fig. S9. Binding constant of L-Ni²⁺ complex. Fig. S10. Job's plot measurements of L by UV-Vis measurements. Fig. S11. ESI-MS spectra of L-Ni²⁺ complex. Fig. S12. Stacked plot of FTIR spectra of L and L+Ni²⁺ adduct Fig. S13. Fluorescence interference study of L.