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1. 1H NMR spectra

Figure S1. 1H NMR spectrum in DMSO-d6 of PNHSMA. The signals at 3.30 ppm and 3.57 ppm 
arise from water and 1,4-dioxane, respectively.
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Figure S2. 1H NMR spectrum in DMSO-d6 of PMATE.
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2. FT-IR spectra

Figure S3. FT-IR spectra of PNHSMA and PMATE.

In the FT-IR spectrum of PNHSMA, three characteristic bands of carbonyl groups (i.e. the 

split ester carbonyl bands at 1808 and 1779 cm-1 and the succinimide carbonyl band at 1735 

cm-1) were observed at 1808, 1779, and 1735 cm-1.1-4 In the FT-IR spectrum of PMATE, the 

characteristic bands of N–H group was observed at 3434 cm-1; the absorption bands at 2976 

and 2935 cm-1 were ascribed to C–H vibrations; the characteristic bands of amide groups 

were observed at 1641 (amide I) and 1527 (amide II) cm-1.
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3. GPC trace of PMATE

Figure S4. The GPC trace of PMATE.
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4. EPR measurements

Figure S5. EPR measurements of TEMPO and PMATE in DMF (1.0 mg/mL) at room 
temperature.
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5. Feed amount of the preparation of nanocatalysts

Table S1. Feed amount of the preparation of nanocatalysts through nanoprecipitation in 
water a.

Nanocatalysts Mes-Acr / mg TEMPO / mg PMATE / mg

Mes-Acr/TEMPO (5/10 mol%) 7 4 /

Mes-Acr/TEMPO (5/20 mol%) 7 8 /

Mes-Acr/TEMPO (5/40 mol%) 7 16 /

Mes-Acr/TEMPO (5/60 mol%) 7 24 /

Mes-Acr/PMATE (5/10 mol%) 7 / 6

Mes-Acr/PMATE (5/20 mol%) 7 / 12

Mes-Acr/PMATE (5/40 mol%) 7 / 24

Mes-Acr/PMATE (5/60 mol%) 7 / 36
a A solution of catalytic component in DMSO (0.5 mL) was added rapidly (<3 s) to de-ionized 
water (5.0 mL) at room temperature under stirring (500 r/min) to obtain the nanocatalyst.
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6. TEM images and size distributions

A

B

Figure S6. TEM images and size distributions determined by TEM and DLS of the (A) Mes-
Acr/PMATE (5/10 mol%) and (B) Mes-Acr/PMATE (5/40 mol%) catalytic systems.

Table S2. Average diameters of nanocatalysts determined by TEM and DLS.

Nanocatalysts DTEM / nm DDLS / nm PDI a

Mes-Acr/TEMPO (5/20 mol%) 216  126 82  30 (major)

4420  920 (minor)

0.176

Mes-Acr/PMATE (5/10 mol%) 55  27 422  71 0.028

Mes-Acr/PMATE (5/20 mol%) 42  26 458  67 0.021

Mes-Acr/PMATE (5/40 mol%) 120  46 710  118 0.027

a Determined by DLS.
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7. Estimation of the reaction order with respect to pyrazole

The reaction rate of products  can be determined by the following equation:productr

   (1)product anisole pyrazole oxygenr kc c c  

Where  is the rate constant; , , and  are the concentrations of anisole, k anisolec pyrazolec oxygenc

pyrazole, and oxygen, respectively. , , and  are the orders with respect to anisole,   

pyrazole, and oxygen, respectively.

   (2)product anisole pyrazole oxygenlog log log log logr k c c c     

Due to the low yield (<10%) of products, the concentration of anisole  can be anisolec

considered as a constant. The concentration of oxygen  is a constant due to the oxygenc

exposure of the solution to open air. As such, the equation (2) can be simplified as the 

following equation:

   (3)product c pyrazolelog log logr k c 

Where  is a constant. And the equation can be used for the determination the value of  ck 

by linear fitting of  vs .productlog r pyrazolelog c

The reaction rate  can be calculated according to the following equation:productr

   (4)
pyrazole Ortho Para

product

( )c y y
r

t




Where  and  are the yields of ortho and para products; t is the reaction time.Orthoy Paray
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Figure S7. The fitting curves of  vs  in the case of (A) Mes-Acr/TEMPO productlog r pyrazolelog c

and (B) Mes-Acr/PMATE as the catalytic systems. The reaction is 0.75 and 0.63 order in 
pyrazole when Mes-Acr/TEMPO and Mes-Acr/PMATE are used as the catalysts, respectively.
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8. Typical 1H NMR data of site-selective arene C–H amination

Figure S8. 1H NMR spectrum in CDCl3 of the extracted mixture of site-selective arene C–H 
amination of anisole with pyrazole over Mes-Acr/PMATE (5/20 mol%). HMDS was added as 
the internal standard. The yields of para and ortho products were 3.46% and 0.35%, 
respectively.
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Figure S9. 1H NMR spectrum in CDCl3 of the extracted mixture of site-selective arene C–H 
amination of m-xylene with pyrazole over Mes-Acr/PMATE (5/20 mol%). HMDS was added 
as the internal standard. The yields of para and ortho products were 1.64% and 0.11%, 
respectively.
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Figure S10. 1H NMR spectrum in CDCl3 of the extracted mixture of site-selective arene C–H 
amination of mesitylene with pyrazole over Mes-Acr/PMATE (5/20 mol%). HMDS was 
added as the internal standard. The yield of the product was 24.29%.
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Figure S11. 1H NMR spectrum in CDCl3 of the extracted mixture of site-selective arene C–H 
amination of 2,6-dimethoxypyridine with pyrazole over Mes-Acr/PMATE (5/20 mol%). 
HMDS was added as the internal standard. The yield of the product was 0.29%.



S16

9. Yields of site-selective arene C–H amination

Table S3. Yields of site-selective arene C–H amination of anisole with pyrazole over various 
nanocatalysts a.

Nanocatalysts Yield of the ortho 
product / %

Yield of the para 
product / %

Mes-Acr/TEMPO (5/10 mol%) 0.71 5.87
Mes-Acr/TEMPO (5/20 mol%) 0.41 3.69
Mes-Acr&TEMPO (5/20 mol%) 0.31 2.75
Mes-Acr/TEMPO (5/40 mol%) 0.15 1.32
Mes-Acr/TEMPO (5/60 mol%) 0.04 0.40
Mes-Acr/PMATE (5/10 mol%) 0.56 5.53
Mes-Acr/PMATE (5/20 mol%) 0.35 3.46
Mes-Acr&PMATE (5/20 mol%) 0.12 0.99
Mes-Acr/PMATE (5/40 mol%) 0.06 0.48
Mes-Acr/PMATE (5/60 mol%) 0.02 0.18

a Determined by 1H NMR.
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10. Stability of acridinium-based photoredox nanocatalysts

Figure S12. FT-IR spectra of the as-prepared and reused Mes-Acr/TEMPO (5/20 mol%) 
nanocatalysts.

The absorption band at 3429 cm-1 was ascribed to O–H vibration of water; the characteristic 

band of aromatic C-H groups was observed at 3063 cm-1. The absorption bands at 2962, 

2910, and 2866 cm-1 were ascribed to saturated C–H vibrations. The characteristic bands of 

C=C and C=N groups were observed at 1660-1590 cm-1; the characteristic bands of C-N 

groups were observed at 1130-1030 cm-1. The significant changes in shape and intensity of 

the characteristic bands of C=C and C=N groups and C-N groups after reuse suggest the 

degradation of Mes-Acr.
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