Two structural types of lanthanide MOFs based on long chain flexible sebacic acid: Syntheses, luminescence, sensing, and magnetic properties

Ying-Hao Jia,^{a,1} Xing Liu,^{a,1} Jian Zhou^{a,*}, Qi-Pin Qin^{b,*}, and Jia-Ying Du^a

^aChongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing normal university, Chongqing, 401331, P.R. China

^bGuangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of

Chemistry and Food Science, Yulin Normal University, Yulin 537000, P.R. China

The pretreatment process of sample detection:

Ferrous sulfate tablet purchased from the market: A tablet (0.3 g) is removed the outer sugar coating, and grinded it into a powder using a mortar. The powder sample is dissolved in 25 mL water and sonicated for 15 minutes, and then centrifuged to remove insoluble impurities. After Fe^{2+} ion in solution is oxidized with 30 % H₂O₂ to form Fe^{3+} ion, the solution is diluted to a final volume of 250 mL for testing use. The concentration of **2b** or **2d** is 375 µg/mL for the luminescent testing.

An iron-rich oral liquid purchased from the market: Fe^{2+} ion of iron-rich oral liquid (10 µL) is oxidized with 30 % H₂O₂ to form Fe^{3+} ion and then diluted to a final volume of 250 mL for testing use.

Three-spring lake water: 100 mL of Sanchun Lake water is taken and stood for 48 h, and then centrifuged to remove insoluble impurities. The supernatant is heated to a slightly boiling state and then stood. After cooling to room temperature, the supernatant is applied for testing use.

Schematic S1. The sql topological net with the single edges and double edges.

Fig. S1. Simulated and experimental PXRD patterns of 1 (a) and 2 (b).

Fig. S2. Emission spectra and excitation spectrum of 2c at room temperature (a) and 77 K (b).
Excitation spectrum of 1 (c), 2a (d), 2b (e), 2d (f), showing weak f-f transition of Ln³⁺ ions.

Fig. S3. Emission spectrum of H₂Seb ligand.

Fig. S4. CIE diagram of 1-2.

Fig. S5. The Relative luminescent intensity of 2b (a) and 2d (b) immersed in water for different times.

Fig. S6. The luminescent intensity of 2b and 2d is gradually decreased with the increase of Fe³⁺ concentration.

Fig. S7. The luminescent intensity of 2b and 2d is gradually decreased with the increase of $CrO_4^{2-} / Cr_2O_7^{2-}$ concentration.

Fig. S8. Effect of pH =1 ~ 7 on the luminescent intensity of 2b (a) and 2d (b) with and without the $Cr_2O_7^{2-}$.

Fig. S9. Luminescent intensity of 2b and 2d after three recycles.

Fig. S10. The response time of 2b and 2d after adding Fe^{3+} , CrO_4^{2-} or $Cr_2O_7^{2-}$.

Fig. S11. The PXRD of 2b (a) and 2d (b) before and after soaking in Fe³⁺, CrO_4^{2-} , or $Cr_2O_7^{2-}$.

Fig. S12. UV / vis absorption spectra of H₂Seb, H₂Seb + Fe³⁺, H₂Seb + CrO₄²⁻, and H₂Seb + Cr₂O₇²⁻ (a); UV / vis absorption spectra of 2b, 2b + Fe³⁺, 2b + CrO₄²⁻, and 2b + Cr₂O₇²⁻ (b); UV / vis absorption spectra of 2d, 2d + Fe³⁺, 2d + CrO₄²⁻, and 2d + Cr₂O₇²⁻ (c).

Fig. S13. Luminescence lifetime measurements for 2b, 2b + Fe³⁺, 2b + CrO₄²⁻, and 2b + Cr₂O₇²⁻ (a). Luminescence lifetime measurements for 2d, 2d + Fe³⁺, 2d + CrO₄²⁻, and 2d + Cr₂O₇²⁻ (b). The concentration is 375 μg/mL for the 2b or 2d, and 4 μM for analyte.

Sample	τ_1 (ms)	Proportion of τ_1 (%)	τ_2 (ms)	Proportion of τ_2 (%)	Amplitude 1	Amplitude 2	τ^* (ms)	Residual DF
2b	0.0100	33.47	0.77	66.53	4995.30	124.55	0.52	482
$2b + Fe^{3+}$	0.0088	37.64	0.69	62.36	4961.84	105.12	0.43	482
$2b + CrO_4^{2-}$	0.0097	53.89	0.69	46.11	5018.27	60.11	0.33	482
$2b + Cr_2O_7^{2-}$	0.0084	66.40	0.69	33.60	5026.42	31.25	0.24	482
2d	0.0087	7.99	1.59	92.01	4730.54	299.17	1.46	482
$2d + Fe^{3+}$	0.0089	20.96	1.39	79.04	4920.66	118.29	1.10	482
$2d + CrO_4^{2-}$	0.0068	15.23	1.16	84.77	4817.60	156.67	0.99	482
$2d + Cr_2O_7^{2-}$	0.0085	28.95	1.31	71.05	4938.46	79.20	0.93	482

Table S1. Regarding the fitting components of luminescence lifetime measurements.

Fig. S14. The linear correlation between I_0/I vs concentration of Fe³⁺ (a), CrO₄²⁻ (c) or Cr₂O₇²⁻ (e) for **2b**, and Fe³⁺ (b), CrO₄²⁻ (d) or Cr₂O₇²⁻ (f) for **2d**.

Fig. S15. The XPS of 2b (a) and 2d (b) before and after soaking in Fe^{3+} solution for 24 h.