Supplementary Material

Synthesis, structural characteristics, and adsorption properties of benzimidazole-functionalized hyper-cross-linked resin

Jixia Li^{a,‡}, Yang Tan^{a,‡}, Wenkai Chen^b, Gui Chen^{a,c*}, Lizhi Chen^a, Jiahui He^a, Sitong Wang^a, Haizhou Zhang^{a,c} and Ye Yuan^{a,c*}

^a College of Chemistry and Materials, Huaihua University, Huaihua 418000, P. R. China

^b China Coal Research Institute Corporation Ltd., Beijing 100013, P. R. China

^c Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Materia, Huaihua University, Huaihua 418000, P. R. China

* Corresponding author

Tel.: +86-745-2851014.

E-mail address: cg@hhtc.edu.cn (G. Chen); yuanye@hhtc.edu.cn (Y. Yuan)

[‡] Jixia Li and Yang Tan contributed equally to this work.

1. Experimental section

1.1. Reagents and instrument

Macroporous chloromethylated polystyrene (CMPs, with a cross-linking degree of 6.0% and a chlorine content of 17.3% w/w) was purchased from Tianjin Nankai Hecheng Co., Ltd, China. Benzimidazole (BZI, AR, 99.5%), Anhydrous ferric chloride (AR, 99.5%), 1,2-dichloroethane (DCE, AR, 99.5%), anhydrous ethanol (AR, 99.5%) were obtained from Aladdin Reagent Co. Ltd. China. Salicylic acid (SA, AR, 99.5%) was acquired from Tianjin Photovoltaic Surprise Chemical Research Institute, China. All other reagents were of commercial grade and used without further treatment.

1.2. Adsorbent characterizations

FT-IR spectra of the resin were recorded using a Nicolet 6700 Fourier Transform Infrared Spectrophotometer (Thermo Scientific Co., USA) via the potassium bromide (KBr) disk method in the wavenumber range of 400-4000 cm⁻¹. The textural properties of the samples were analyzed by N₂ physisorption at 77 K using a Micromeritics ASAP 2020 surface area analyzer. The polymer morphology was studied with Sigma HD Scanning Electron Microscopy (SEM). HRTEM images were captured with a JEM-2100. XPS measurements were carried out using an

ESCALAB 250Xi analyzer. The SA concentration was measured using a Shimadzu UV2600 UV-Vis absorption spectrometer.

1.3. Thermodynamic parameters

These parameters such as ΔH , ΔS , and ΔG were calculated in accordance with Eqs (S1) and (S2) were derived by quantifying the adsorption of SA on BZI-HCMPs at various temperatures. According to Freundlich model, the parameters were obtained as follows:

$$lg(q_e/C_e) = \Delta S/(2.303R) - \Delta H/(2.303RT)$$
 (S1)

$$\Delta G = \Delta H - T \Delta S \tag{S2}$$

Where q_e represents the equilibrium capacity (mg/g), C_e signifies the equilibrium concentration (mg/L), R represents the general gas constant (8.314 J/(mol·K)), and T denotes temperature (K).

Fig. S1 SEM images of (A) CMPs, (B) HCMPs and (C) BZI-HCMPs.

Fig. S2 XRD patterns of CMPs, HCMPs, and BZI-HCMPs.

Fig. S3 UV-vis DRS of CMPs, HCMPs, and BZI-HCMPs.

Scheme S1 Potential interaction between BZI-HCMPs and SA.

Table S1 Correlated parameters of the equilibrium data for the adsorption of SA on BZI-HCMPs at 293, 303, and 313 K according to the Langmuir and Freundlich models.

	Langmuir model			Freundlich model			
	$K_L/(L/mg)$	$q_m/(\mathrm{mg/g})$	R^2	$K_F/((\mathrm{mg/g})(\mathrm{L/mg})^{1/\mathrm{n}})$	n	R^2	
BZI-HCMPs (293K)	0.01443	243.1817	0.9797	11.0641	1.88	0.9966	
BZI-HCMPs (303K)	0.01423	275.0057	0.9897	12.2036	1.86	0.9887	
BZI-HCMPs (313K)	0.02142	295.1372	0.9437	13.1782	1.82	0.9639	

Fig. S4 Vant-Hoff plotting of log (q_e/C_e) versus 1/T (BZI-HCMPs).

Table S2 Adsorption thermodynamic parameters of BZI-HCMPs.

Temp. (K)	ΔG (kJ/mol)	ΔH (kJ/mol)	ΔS (J/(mol·K))
293	-0.647	13.167	47.148
303	-1.119	13.167	47.148
313	-1.590	13.167	47.148

Table S3 Relevant parameters of kinetic data for the adsorption of SA on the BZI-HCMPs at 293, 303, and 313K.

	Pseudo-first-order			Pseudo-second-order			
	$q_e/(\mathrm{mg/g})$	$k_l/(\text{min}^{-1})$	R^2	q_e /(mg/g)	$k_2/(g/(mg \cdot min))$	R^2	
BZI-HCMPs (293 K)	180.3308	0.03182	0.9730	177.8354	0.003797	0.9329	
BZI-HCMPs (303 K)	188.1661	0.03175	0.9826	186.7358	0.005174	0.9204	
BZI-HCMPs (313 K)	198.6579	0.03237	0.9724	196.3758	0.005322	0.9025	

Fig. S5 The removal efficiency of SA as a function of the concentration of the polymers.

Fig. S6 Effect of the concentration of the polymer on the adsorption.

Fig. S7 The recycling times of SA adsorption on BZI-HCMPs.

Fig. S8 (A) Adsorption of SA in tap water; (B) Effect of Na₂SO₄ concentration on SA adsorption.

Table S4 Fitting parameters of adsorption model after replacing deionized water with tap water on BZI-HCMPs.

	Lan	gmuir mode	1	Freundlich model			
	$K_L/(L/mg)$	q_e /(mg/g)	R^2	$K_F/((mg/g)(L/mg)^{1/n})$	n	R^2	
BZI-HCMPs	0.0058	139.7405	0.0782	4.1706	1.90	0.9896	
(298 K)	0.0038	139./403	0.9/82	4.1700	1.09	0.9690	

Table S5 Environmentally-friendly and cost-effective simple analysis of synthesized BZI-HCMPs.

Cost of raw materials				Synthesis E	Synthesis Energy consumption analysis			
Raw	Dosage	Unit price (RMB/kg)	Cost (RMB)	Process	Time(h)& Tem.(°C)	Energy consumption calculation (RMB)		
CMPs	20.0 g	250	5.0	Friedel-Crafts	0.25.00	0.5 kW×0.25 h×1.2		
DCE	200 mL	8.0	2.0	alkylation reaction	0.25, 80	$RMB/(kW \cdot h) = 0.15$		
$FeCl_3$	4.0 g	20.0	0.1	nucleophilic	12.0.05	0.5 kW×12.0 h×1.2		
NaOH	8.0 g	6.0	0.05	substitution	12.0, 85	$RMB/(kW \cdot h) = 7.2$		
C ₂ H ₅ OH	1000 mL	10.0	8.0	Soxhlet extractor washing	48.0, 60	1.0 kW×48.0 h×1.2 RMB/(kW·h)=57.6		
CH ₃ OH	200 mL	12.0	1.9	Stoving	12.0, 60	$1.0 \text{ kW} \times 12.0 \text{ h} \times 1.2 $ RMB/(kW·h)=14.4		
Hot H ₂ O	2000 mL	0.01	0.01	Equipment /Labor	-	0.5		
Total	-	-	17.06	Total	-	79.85		