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Experimental section

General

All reagents and chemicals used in this study were purchased from authentic chemical
suppliers. A standard literature procedure was followed for drying the solvents.! In accordance with
the previous literature, 8-methyl-2-chloroquinoline-3-carboxaldehyde, its corresponding oxo
compound,?>* and potassium tetrachloropalladate(Il) K,[PdCl;] were synthesized.> The melting
points were confirmed by using a RAAGA melting point. JASCO FT-IR 4100 instrument was used
to record infrared spectra in the form of KBr pellet in the range of 400-4000 cm-!'. With the aid of a
JASCO V-630 spectrophotometer, UV-VIS spectra of the ligands and complexes were obtained.
The NMR spectra were recorded with a Bruker DRX-500 advance spectrometer at 400MHz using
DMSO-d and TMS as internal references. The thermal stability of the complex were performed
under nitrogen atmosphere where temperature range of 0-550 and 10 °C/min heating rate was
determined using a Pyris Diamond TG-DTA Analyzer. Mass spectrum was recorded with a high-
resolution Q-TOF mass spectrometer.The CD spectrum were recorded in JASCO J-1500 with ethyl

acetate as standard solution.
FT-IR spectroscopy

FT-IR spectra of the N-heterocyclic thiosemicarbazone ligands 8MOQHL!* and their
corresponding complexes Pd(8MOQL!#)Cl were compared in the region of 400-4000 cm!. The ligands
8MOQHL!-showed a broad band at 1646-1652 cm™! corresponding to the stretching of oxo (C=0)
group. However, in the spectra of the complexes Pd(8MOQL!)CI, oxo (C=0) group was shifted
to lower frequencies (1619-1645 cm!) indicating the coordination of oxo group to the palladium
ion.%’A sharp band at 1538-1606 cm! corresponding to azomethine (C=N) group in the ligands
8MOQHL'# was shifted to lower frequencies (1529-1540 cm’') in the complexes
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Pd(8BMOQL™)CI1, which may be attributed to the involvement of azomethine group in
coordination to the palladium ion. The C=S stretching observed at 800-854 cm! in the ligands
8MOQHL disappeared in the complexes Pd(8MOQL'#)Cl and a new band was appeared at 750-776

cm! showing the thione-thiol tautomerization prior to coordination with the metal centre.®°

Electronic spectroscopy

The electronic absorption spectra of the ligands 8MOQHL!* and complexes
Pd(8MOQL™)CI were recorded in DMSO. The ligands 8MOQHL!-* exhibited two absorption
bands in the region 267-391 nm. The absorption bands at 267-269 nm were assigned to m—m*
transitions and the bands at 361-391 nm have been assigned to n—7* transitions.! Conversely, in
the complexes bathochromically shifted bands were observed as a result of extensive conjugation of
n-electrons due to the coordination of Schiff bases to the palladium metal centre.!! The absorption
spectra of the Pd(II) complexes Pd(8MOQL'%2)Cl exhibited strong bands in the region 239-270
nm and 394-395 nm corresponding to intra ligand transition and ligand to metal charge transfer
(LMCT) transition. A third weak band was observed at 414 and 419 nm which can be assigned to
metal to ligand charge transfer transition (MLCT).!>!3 The complex Pd(8MOQL3)CI showed
absorption at 243-267 nm corresponding to intra ligand transition and 410 nm attributable to metal
to ligand charge transfer (MLCT). Whereas, the complex Pd(8MOQL#CI exhibited three bands
centred at 240-269 nm, 393 nm and 418 nm corresponding to intra ligand transition, ligand to metal

charge transfer (LMCT) and metal to ligand charge transfer transition (MLCT) transitions.!?!3
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Fig. S1. Electronic spectra of the complexes PA(8SMOQL!)CI



Thermogravimetric analysis
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Fig. S3.TG-DTA plots of Pd(SMOQL*CI
1
H NMR Spectroscopy

The '"H NMR spectra of the ligands 8MOQHL!* and complexes Pd(8MOQL)CI were

recorded in DMSO-d® and the corresponding data were presented in Fig. S2-S5. The ligands

exhibited two singlets in the region & 11.61-12.01 ppm and 6 10.26-11.18 ppm analogous to
quinoline N(1)H and imine N(3)H protons respectively.” In the complexes Pd(SMOQL!)CI,

quinoline N(1)H appeared at 6 13.01-13.14 ppm but there were no signals for N(3)H indicating the

enolization and deprotonation of the -NH-C=S group prior to coordination of thiolate sulphur.®!°

The ligands displayed a singlet at 6 8.75-8.67 ppm corresponding to the azomethine (HC=N)

proton.” However, in the complexes PA(8MOQL)CI, azomethine proton was found at & 8.36-9.01

ppm.®1% A doublet appeared at 6 8.29 ppm analogous to terminal N(4)H, protons in the ligand
8MOQHL!. However, in the complex PA(8MOQL!CI, terminal N(4)H, protons singlet was found



atd 10.48 ppm. In the ligands SMOQHL?*3&4, a singlet resonance signal appeared at 6 8.61-10.16
ppm assigned to terminal N(4)H proton and this was found at 6 8.67-8.85 ppm in the complexes
Pd(8MOQL23%4)CL.1° A sharp singlet was found at 8 8.30 ppm and & 8.42 ppm corresponding to
C(4)H protons of the ligands SMOQHL!# whereas in the complexes PA(SMOQL!)CI, the C(4)H
protons resonated at & 8.67-9.38 ppm.!! In the ligand SMOQHL?, triplet resonance signal was
observed at 8 3.05-3.66 ppm for the terminal methyl protons and in the complex Pd(8MOQL?*)Cl at
5 2.80-2.81 ppm.®12 In ligand SMOQHLS?, a triplet was observed at & 1.17-1.20 ppm for terminal
methyl protons and a pentet at & 3.60-3.66 ppm for methylene protons.” In complex
Pd(8MOQL3)CI, terminal methyl protons were shown at 8 1.09-1.13 ppm and methylene protons
at 6 3.17-3.30 ppm.? In the ligand 8SMOQHL*, aromatic protons of quinoline moiety and terminal
phenyl protons were appeared as multiple resonance signals in the range 8 7.14-7.60 ppm,’ and in
the complex PA(8MOQL#CI these appeared as multiple signals around 6 6.99-7.82 ppm.%10 A
singlet corresponding to quinoline methyl protons -CHs;was observed at 6 2.43 and 6 2.62 ppm.
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Fig. S4. 'H NMR spectrum of the complex Pd(SMOQL!)CI
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Fig. S5. '"H NMR spectrum of the complex Pd(8MOQL?)Cl
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Fig. S6. '"H NMR spectrum of the complex Pd(8MOQL3)Cl
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Fig. S7. '"H NMR spectrum of the complex Pd(8MOQL#C1

Mass Spectroscopy

Continuous efforts to obtain suitable crystals of Pd(8MOQL?)CI were unsuccessful. Hence,
the stoichiometry of the complex was confirmed by mass spectral analyses.The [M+2] peak arises
due to the presence of naturally occurring isotopes, particularly heavier isotopes of chlorine (3’Cl)
element, in the molecule being analyzed.The complex showed a peak at m/z Calcd. (Exper.):-

429.23(433.99) corresponding to [Pd(8MOQL?)(CH;CN)]* ion (Fig. S6).
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Fig. S8. Mass spectrum of the complex Pd(8MOQL?)C1




Synthesis of Pd(IT) complexes

A solution of the ligands SMOQHL!* (87-124 mg, 35 mmol) in methanol (10 cm?) was added to
K,[PdCl;] (100 mg, 35 mmol) in 10 cm?® of chloroform and refluxed for 1 h. Dark brown
precipitates were cooled and separated by filtration, washed with ethanol and dried under room
temperature. For X-ray analysis, the complexes were recrystallized from methanol and
dimethylformamide (MeOH/DMF) in a 4:1 ratio.

[PABMOQLNCI] Yield:(124 mg, 88%). Melting point: >240°C. Elemental analyses Calc.
(Found)%:-C, 35.93(36.05); N, 13.97(13.80); H, 2.76(2.88);0, 3.99(3.92) FT-IR (v, cm™!) in KBr:
v(C=0)1622, v(C=N) 1540, v(C-S) 771.UV-Vis (DMSO), Ap.x nm (g, dm*> mol'cm™): 269
(11,447) (Intra ligand transition), 382 (66,476) (LMCT), 431 (52,283) (MLCT). 'H NMR (400
MHz, DMSO-d%, 6 ppm, J Hz):13.01(s, 1H, N(1)H),10.48 (s, 1H,terminal —-NH,), 9.38 (s, 1H,
N(4)H), 8.85 (s, 1H, -CH=N), 8.68 (s, 1H, C(4)H),7.95-7.98 (d, 1H, J=12.0 Hz, C(5)H),7.38-7.40
(t, 1H, J=8.0 Hz, C(6)H),7.76-7.78 (d, 1H, J=8.0 Hz, C(7)H),2.60 (s, 3H, -CHj3, quinoline methyl at
C(8) position).

[PABMOQLACI] Yield:(131 mg, 90%). Melting point: >240°C. Elemental analyses Calc.
(Found)%:- C, 37.61 (37.70); N, 13.49(13.40); H, 3.16(3.25);0, 3.85(3.98).FT-IR (v, cm™!) in KBr:
v(C=0) 1645, v(C=N) 1529, v(C-S) 750.UV-Vis (DMSO), Ap.x nm (g, dm? mol'em™):267
(64,245) Intraligand transition, 394 (62,697) LMCT transition. 'H NMR (400 MHz, DMSO-d®, &
ppm, J Hz):13.03 (s, 1H, N(1)H), 8.87 (s, 1H, N(4)H), 8.38 (s, IH, -CH=N), 8.68 (s, 1H, C(4)H),5
7.76-7.78 (t, 1H, J=8.0 Hz, C(5)H), 7.40-7.42 (t, 2H, J=8.0 Hz, C(6)), 6 7.66-7.68 (d, 1H,
J=8.0Hz, C(7)H), & 2.80-2.81 (d, 3H, J=4.0 Hz, terminal -CHj3),0 2.60 (s, 3H, quinoline -CHj at
C(8) position).

[PABMOQLCI] Yield:(138 mg, 92%). Melting point: >240°C. Elemental analyses Calc.
(Found)%:- C, 39.17 (39.10); N, 13.05(13.10); H, 3.52(3.55);0, 3.73(3.80). FT-IR (v, cm™!) in
KBr: v(C=0) 1623, v(C=N) 1536, v(C-S) 776.UV-Vis (DMSO), Apax nm (g, dm> mol'ecm™): 269
(11,447) (Intra ligand transition), 382 (66,476) (LMCT), 421 (53,565) (MLCT). '"H NMR (400
MHz, DMSO-d®, & ppm, J Hz):13.02 (s, 1H, N(1)H), 9.72 (s, 1H, N(4)H), 8.36 (s, 1H, -CH=N),
8.85 (s, 1H, C(4)H), 7.76-7.78(d, 1H, J = 8Hz, C(5)H), 7.38-7.40 (d, 1H, J = 12.0 Hz, C(7)H),
7.59-7.62 (t, 1H, J = 12.0 Hz, C(6)H), 3.17-3.30 (q, 2H, J = 16.0 Hz, terminal -CH>),1.09-1.13 (t,
3H, J = 16.0 Hz, terminal -CH3), 2.60 (s, 3H, quinoline -CHj3 at C(8) position).

[PABMOQLHCI] Yield:(145 mg, 87%). Melting point: >240°C. Elemental analyses Calc.
(Found)%:- C, 45.30 (45.10); N, 11.74(11.80); H, 3.17(3.20);0, 3.35(3.30). FT-IR (v, cm!) in
KBr: v(C=0) 1619, v(C=N) 1531, v(C-S) 753.UV-Vis (DMSO), Ayax nm (g, dm> mol 'cm™1):269



(61,168) (Intraligand transition), 390 (35,937) LMCT transition, 415 (36,427) MLCT transition. 'H
NMR (400 MHz, DMSO-d®, & ppm, J Hz):13.14(s, 1H, N(1)H), 9.92 (s, 1H, N(4)H), 9.01(s, 1H, -
CH=N), 8.67(s, 1H, C(4)H),6 7.76-7.78 (d, 1H, J = 8.0 Hz, C(5)H), & 7.37-7.40 (d, 1H, J = 12.0
Hz, C(7)H), 6 7.59-7.62 (t, 1H, J = 12.0 Hz,C(6)H), 6 3.17-3.30 (q, 2H, J = 52.0 Hz, terminal -
CH,), 6 1.09-1.13 (t, 3H, J = 16.0 Hz, terminal -CH3), & 2.62(s, 3H, quinoline -CH; at C(8)

position).

Procedure for bromoamination reaction

A dry round bottom flask was charged with NBS (0.11mmol), chalcone (0.1mmol), and catalyst
(16 mol%), followed by 5 cm? of acetonitrile. After refluxing the mixture for 5 minutes,
p-toluenesulfonamide (0.1 1mmol) was added. Further, the reaction mixture was continued to reflux
for 6 h. The reaction progress was monitored using thin layer chromatography (TLC). Afterwards,
ethyl acetate was used to work up the reaction mixture, and then the organic layer was collected and
dried over anhydrous sodium sulphate. The crude product was purified using column

chromatography with petroleum ether and ethyl acetate as eluents.

Spectral data of the coupled products

1B

'"H NMR (400 MHz, CDCl3, & ppm, J Hz): 8.34 (s, 1H, C4-H), 7.77-7.78 (d, J = 4 Hz, 1H, C5-
H),7.56-7.57 (t, J = 2 Hz, 1H, C6-H), 7.75-7.76 (t, J = 4Hz, 1H, C7-H), 7.80-7.81 (t, /=4 Hz, 1H,
C8-H), 4.71 (s, 1H, chiral-CH-NH), 5.70 (s, 1H, chiral-CH-Br), 6.83-6.85 (d, /= 8 Hz, 1H,
p-toluene-NH-), 7.79-7.81 (d, J = 4 Hz, 2H, p-toluene phenyl protons), 7.37-7.38 (d, J = 8Hz, 2H,
p-toluene phenyl protons), 2.14 (s, 3H, p-toluene-CHs), 7.83-7.85 (d, J = 8 Hz, 2H, phenyl ring
protons), 7.39-7.41 (m, 3H, phenyl ring protons).3C NMR (100 MHz, CDCl;, 8 ppm, J Hz):
196.60, 143.72, 142.44, 139.13, 136.68, 136.16, 134.12, 133.78, 130.50, 129.72, 129.43, 128.61,
127.61, 127.83, 127.10, 126.83, 126.67, 126.58, 126.45, 125.47, 125.12, 124.52, 124.19, 124.00,
62.86, 51.95, 21.53.

2B

'"H NMR (400 MHz, CDCl;, 6 ppm, J Hz): 8.28 (s, 1H, C4-H), 7.59 (s, J = 4 Hz, 1H, C5-H),7.572-
7.569 (d, J= 8 Hz, 1H, C7-H), 7.99-8.00 (d, /=4 Hz, 1H, C8-H), 4.84 (s, 1H, chiral-CH-NH), 5.73
(s, 1H, chiral-CH-Br), 6.84-6.86 (d, J = 8 Hz, 1H, p-toluene-NH-),7.80-7.82 (d, /= 8 Hz, 2H,
p-toluene phenyl protons),7.29-7.31 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.14 (s, 3H,
p-toluene-CHs), 7.83-7.85 (d, 2H), 7.38-7.42 (m, 3H, naphthalene protons), 2.54 (s, 3H, -CHj3, C6-
H quinoline methyl protons).'3C NMR (100 MHz, CDCls, 6 ppm, J Hz): 194.77, 147.67, 145.86,




143.64, 137.65, 136.37, 135.33, 134.26, 133.73, 129.70, 129.42, 129.36, 129.22, 128.91, 128.65,
127.79, 127.02, 126.71, 126.58, 126.45, 61.03, 50.12, 21.60, 21.37.

3B

'"H NMR (400 MHz, CDCl;, & ppm, J Hz): 8.30 (s, 1H, C4-H), 7.72-7.74 (d, J = 8 Hz, 1H, C5-H),
7.61-7.63 (d, J = 4 Hz, 1H, C6-H), 8.07 (s, 1H, C8-H), 5.19 (s, 1H, chiral-CH-NH), 5.70 (s, 1H,
chiral-CH-Br), 6.81-6.83 (d, /= 8 Hz, 1H, p-toluene-NH-), 7.79-7.81(d, J = 8 Hz, 2H,

p-toluene phenyl protons), 7.47-7.49 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.12 (s, 3H,
p-toluene-CHs), 7.86-7.87 (d, 2H), 7.37-7.41 (m, 3H), 2.56 (s, 3H, -CH3, C7-H quinoline methyl
protons).'3C NMR (100 MHz,CDCls, & ppm, J Hz): 194.15, 148.55, 147.48, 143.55, 143.46,142.26,
139.23, 136.42, 135.36, 134.28, 130.11, 129.77, 129.68, 129.38, 128.94, 128.67, 127.56, 127.35,
127.11, 126.63, 127.48, 126.48, 126.41, 61.14, 50.54, 21.51, 21.34.

4B

'"H NMR (400 MHz, CDCls, 6 ppm, J Hz): 8.29 (s, 1H, C4-H), 7.57-7.59 (d, J = 4 Hz, 1H, C5-H),
7.50-7.52 (d, J =4 Hz, 1H, C6-H), 7.54-7.55 (d, 1H, C7-H), 5.10 (s, 1H, chiral-CH-NH), 5.75

(s, 1H, chiral-CH-Br), 6.83-6.85 (d, /= 12 Hz, 1H, p-toluene-NH-), 7.80-7.82 (d, /= 8 Hz, 2H,
p-toluene phenyl protons), 7.45-7.46 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.13 (s, 3H,
p-toluene-CHs), 7.85-7.87 (d, 2H), 7.39-7.42 (m, 3H), 2.73 (s, 3H, -CH;, C8-H quinoline methyl
protons).3C NMR (100 MHz, CDCl;, & ppm, J Hz): 192.11, 134.71, 132.89, 132.49,
129.68,129.38, 127.59, 127.20, 127.11, 126.90, 126.79, 126.47, 125.52, 125.30, 124.99, 124.12,
124.02, 56.22, 40.64, 21.04, 19.60.

5B

'"H NMR (400 MHz, CDCls, & ppm, J Hz): 8.50 (s, 1H, C4-H), 7.75-7.76 (d, J = 4 Hz, 1H, C5-H),
7.55-7.56 (d, J = 4 Hz, 1H, C6-H), 7.73-7.74 (d, J = 4 Hz, 2H,C7&C10-H), 7.53-7.54 (d, J = 8 Hz,
2H,C8&C9-H), 4.85 (s, 1H, chiral-CH-NH), 5.34 (s, 1H, chiral-CH-Br), 6.72-6.74 (d, J = 8 Hz, 1H,
p-toluene-NH-), 7.90-7.91 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 7.42-7.44 (d, J = 8 Hz, 2H,
p-toluene phenyl protons), 2.31 (s, 3H, p-toluene-CHj3), 7.92.7.93 (d, J = 4 Hz, 2H), 7.37-7.39 (m,
3H).3C NMR (100 MHz, CDCl;, & ppm, J Hz):188.54, 142.32, 139.50, 138.30, 137.90,137.38,
133.59, 133.15, 132.06, 130.74, 128.62,127.44, 127.21, 126.89, 126.84, 126.62, 126.57, 126.12,
125.94, 125.36, 124.85, 124.71, 62.23, 54.45, 20.48.

6B

'H NMR (400 MHz, CDCls, 6 ppm, J Hz): 8.48 (s, 1H, C4-H), 7.78-7.79 (d, J =4 Hz, 1H, C5-H),
7.75-7.77 (t, J = 2 Hz, 1H, C6-H), 7.80-7.81 (t, J = 4 Hz, 1H, C7-H), 7.94-7.95 (t, J = 4 Hz, 1H,



C8-H), 5.11 (s, 1H, chiral-CH-NH), 5.64 (s, 1H, chiral-CH-Br), 6.87-6.89 (d, /=8 Hz, 1H,
p-toluene-NH-), 7.92-7.93 (d, J = 4 Hz, 2H, p-toluene phenyl protons), 7.45-7.47 (d, J = 8 Hz, 2H,
p-toluene phenyl protons), 2.13 (s, 3H, p-toluene-CHj3), 8.11 (s, 1H, naphthalene protons), 8.02-
8.04 (d, J = 8 Hz,1H, naphthalene protons), 7.96-7.98 (d, J = 8 Hz, 1H, naphthalene protons), 7.58-
7.64 (m, 4H, naphthalene protons). *C NMR (100 MHz, CDCl;, & ppm,J/Hz):195, 145.8, 145.67,
143.50, 141.88, 139.65, 139.36, 137.80, 135.53, 133.21, 132.72, 130.58, 130.21, 128.95, 128.44,
128.03, 127.59, 127.09, 126.75, 126.54, 126.44, 126.12, 125.76, 125.59, 124.56, 124.43, 123.19,
123.96, 61.05, 49.50, 20.8.

7B

'H NMR (400 MHz, CDCls, § ppm, J Hz): 8.45 (s, 1H, C4-H), 7.56-7.57 (d, J = 4 Hz, 1H, C5-H),
7.52-7.54 (d, J = 8Hz, 1H, C7-H), 7.67-7.68 (d, J = 4 Hz, 1H, C8-H), 4.97 (s, 1H, chiral-CH-NH),
5.78 (s, 1H, chiral-CH-Br), 6.93-6.95 (d, J = 8 Hz, 1H, p-toluene-NH-), 7.70-7.72 (d, /= 8 Hz, 2H,
p-toluene phenyl protons), 7.47-7.49 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.13 (s, 3H,
p-toluene-CHs), 7.95 (s, 1H, naphthalene protons), 7.89-7.91 (d, 1H, J = 8 Hz, naphthalene
protons), 7.96-7.98 (d, 1H, J = 8 Hz, naphthalene protons), 7.63-7.65 (m, 4H, naphthalene protons),
2.55 (s, 3H, -CHj3, C6-H quinoline methyl protons).*C NMR (100 MHz, CDCls, 8 ppm, J Hz):
195.29, 144.38 145.8, 142.65, 142.52, 141.08, 138.11, 136.56, 135.62, 133.22, 133.13, 132.68,
132.43, 131.14, 130.57, 128.58, 128.43, 128.58, 127.44, 126.54, 125.76, 125.61, 125.42, 124.42,
123.20, 122.65,61.80, 49.21, 21.66, 20.49.

8B

'"H NMR (400 MHz, CDCls, 6 ppm, J Hz): 8.41 (s, 1H, C4-H), 7.57-7.59 (d, J = 8Hz, 1H, C5-
H),7.55-7.56 (d, J =4 Hz, 1H, C6-H), 7.67 (s, 1H, C8-H), 4.75 (s, 1H, chiral-CH-NH), 5.78 (s, 1H,
chiral-CH-Br), 6.91-6.93 (d, J = 8 Hz, 1H, p-toluene-NH-), 7.72-7.74 (d, /= 8 Hz, 2H,

p-toluene phenyl protons), 7.45-7.47 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.12 (s, 3H,
p-toluene-CHs), 7.95 (s, 1H, naphthalene protons), 7.91-7.93 (d, 1H, J = 8 Hz, naphthalene
protons), 7.69-7.70 (d, 1H, J =4 Hz, naphthalene protons), 7.61-7.65 (m, 4H, naphthalene protons),
2.53 (s, 3H, -CH3, C7-H quinoline methyl protons).’*C NMR (100 MHz, CDCl;, 8 ppm, J Hz):
196.13, 147.60, 143.87, 142.74, 140.69,137.56, 136.92, 136.28, 134.25,133.45, 131.25, 130.62,
129.73, 129.55, 129.47, 128.62, 128.58, 128.13, 128.00,127.57, 127.48, 127.15, 126.79, 126.63,
125.46, 124.22, 124.04, 62.46, 50.48, 22.79, 21.54.

9B



'H NMR (400 MHz, CDCls, 6 ppm, J Hz): 8.44 (s, 1H, C4-H), 7.61-7.62 (d, J = 4 Hz, 1H, C5-H),
7.56-7.57 (d, J =4 Hz, 1H, C6-H), 7.53-7.54 (d, J =4 Hz ,1H, C7-H), 4.88 (s, 1H, chiral-CH-NH),
5.81 (s, 1H, chiral-CH-Br), 6.96-6.99 (d, J = 12 Hz, 1H, p-toluene-NH-),7.80-7.82 (d, J = 8 Hz, 2H,
p-toluene phenyl protons), 7.28-7.30 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.11 (s, 3H,
p-toluene-CHs), 7.93 (s, 1H, naphthalene protons), 7.87-7.89 (d, J = 4 Hz 1H, naphthalene protons),
7.68-7.70 (d, J = 8 Hz, 1H, naphthalene protons),7.48-7.51 (m, 4H, naphthalene protons), 2.42 (s, 3H,
-CH;, C8-H quinoline methyl protons).!3C NMR (100 MHz, CDCls, & ppm, J Hz): 194.64, 140.07,
136.38, 135.04, 134.18,133.89, 133.69, 13.04, 131.75, 131.41, 129.79,129.66, 129.53, 129.09,
128.65, 128.52,129.93, 127.64, 127.57, 127.50, 127.08, 126.76, 126.52, 126.41, 125.02, 124.54,
124.21, 62.15, 52.23, 21.73, 21.46.

10B

'H NMR (400 MHz, CDCl;, 6 ppm, J Hz): 8.41(s, 1H, C4-H), 7.653-7.649 (d, J = 4 Hz, 1H, C5-H),
7.57-7.58 (d, J = 4 Hz, 1H, C6-H), 7.59-7.60 (d, J = 4 Hz, 2H, C7&C10-H), 7.30-7.32 (d, J = 8 Hz,
2H, C8&C9-H), 4.67 (s, 1H, chiral-CH-NH), 5.69 (s, 1H, chiral-CH-Br), 6.82-6.84 (d, /= 8 Hz, 1H,
p-toluene-NH-), 7.82-7.84 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 7.39 -7.41 (d, /= 8 Hz, 2H,
p-toluene phenyl protons), 2.40 (s, 3H, p-toluene-CHs;), 7.95 (s, 1H, naphthalene protons), 7.92-7.93
(d, J = 4 Hz, 1H, naphthalene protons), 7.72-7.73 (d, J = 4 Hz,1H, naphthalene protons), 7.52-7.55
(m, 4H, naphthalene protons).'*C NMR (100 MHz, CDCls, 6 ppm, J Hz): 195.26, 147.47, 142.49,
140.96, 135.61,135.09, 133.50, 133.11, 132.51, 131.10, 130.63,128.68, 128.38, 128.27, 127.59,
127.50, 126.97, 126.80, 126.47, 125.81, 125.55, 125.37, 124.58, 124.49, 123.81, 123.18, 123.10,
121.07, 122.35, 62.30, 49.69, 21.66.

11B

'H NMR (400 MHz, CDCls, 6 ppm, J Hz): 7.96 (s, 1H, C4-H), 7.65-7.67 (d, J = 4 Hz, 1H, C5-
H),7.43-7.47 (t,J = 2 Hz, 1H, C6-H), 7.59-7.62 (t, J =4 Hz, 1H, C7-H), 7.80-7.82 (t, /=4 Hz, 1H,
C8-H), 5.15 (s, 1H, chiral-CH-NH), 5.54 (s, 1H, chiral-CH-Br), 6.83-6.84 (d, /=8 Hz, 1H,
p-toluene-NH-), 7.84-7.87 (d, J = 4 Hz, 2H, p-toluene phenyl protons), 7.28-7.30 (d, J = 8 Hz, 2H,
p-toluene phenyl protons), 2.42 (s, 3H, p-toluene-CHs), 7.55-7.56 (d, J = 4 Hz,1H, thiophene ring
protons), 7.53-7.54 (d, J = 4 Hz,1H, thiophene ring protons), 7.50-7.52 (t, J = 8 Hz,1H, thiophene
ring protons).'*C NMR (100 MHz, CDCls, 6 ppm, J Hz):196.33, 143.87, 142.74, 140.42, 134.25,
131.55, 131.25, 130.62, 129.73, 129.55, 129.47, 128.62, 128.58, 128.13, 128.00, 127.57, 127.48,

127.15, 126.79, 126.63, 125.46, 124.32, 124.22, 62.76, 50.53, 21.46.
12B



'H NMR (400 MHz, CDCls, 8 ppm, J Hz): 8.32 (s, 1H, C4-H), 7.83 (s,1H, C5-H),7.53-7.54 (d, J =
8 Hz, 1H, C7-H), 7.95-7.98 (d, J = 4 Hz, 1H, C8-H), 4.58 (s, 1H, chiral-CH-NH), 5.69 (s, 1H,
chiral-CH-Br), 6.90-6.91 (d, J = 8 Hz, 1H, p-toluene-NH-), 7.92-7.91 (d, J = 8Hz, 2H,

p-toluene phenyl protons), 7.17-7.18 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.01 (s, 3H,
p-toluene-CHs), 7.86-7.88 (d, J =8 Hz, 1H), 7.56-7.55 (d, J = 4 Hz, 1H), 7.75-7.76 (t, J = 4 Hz,
1H), 2.48 (s, 3H, -CH3, C6-H quinoline methyl protons).!3C NMR (100 MHz, CDCls, 8 ppm, J Hz):
194.42, 148.60, 147.21, 143.67, 143.51, 140.37, 139.19, 136.37, 135.53, 134.52, 134.28, 131.44,
129.70, 129.38, 129.24, 128.91, 128.67, 128.14, 127.93, 127.53, 126.99, 126.68, 126.53, 126.44,

61.00, 49.88, 21.52, 21.39.
13B
'"H NMR (400 MHz, CDCl3, & ppm, J Hz): 8.45 (s, 1H, C4-H), 7.77-7.78 (d, J = 8 Hz, 1H, C5-
H),7.48-7.49 (d, J = 4 Hz, 1H, C6-H), 7.92-7.93 (m, 1H, C8-H), 4.73 (s, 1H, chiral-CH-NH), 5.42
(s, 1H, chiral-CH-Br), 7.01-7.03 (d, /= 8 Hz, 1H, p-toluene-NH-), 8.23-8.27 (d, /= 8 Hz, 2H,
p-toluene phenyl protons), 7.43-7.46 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.17 (s, 3H,
p-toluene-CHs), 7.80-7.81 (d, J = 4 Hz, 1H), 7.30-7.29 (d, J = 4 Hz, 1H), 7.73-7.75 (t, J = 8 Hz,
1H), 2.49 (s, 3H, -CH;,C7-H quinoline methyl protons).'*C NMR (100 MHz, CDCl;, & ppm, J Hz):
195.21, 145.97, 144.95, 139.67, 137.98,137.86, 137.09, 135.74, 135.18, 133.54, 132.96, 132.57,
131.61, 131.49, 128.20, 127.68, 127.04, 126.49,126.49, 125.59, 124.88, 62.11, 51.55, 21.75, 20.62.
14B
'"H NMR (400 MHz, CDCls, & ppm, J Hz): 8.33 (s, 1H, C4-H), 7.67-7.69 (d, J = 4 Hz, 1H, C5-
H),7.43-7.47 (d, J=4 Hz, 1H, C6-H), 7.51-7.53 (d, 1H, C7-H),4.91 (s, 1H, chiral-CH-NH), 5.62
(s, 1H, chiral-CH-Br), 6.82-6.84 (d, /= 12 Hz, 1H, p-toluene-NH-),7.80-7.82 (d, J = 8 Hz, 2H,
p-toluene phenyl protons),7.37-7.39 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 2.14 (s, 3H,
p-toluene-CHs), 7.72-7.73 (d, J = 4 Hz, 1H), 7.29-7.31 (d, J = 8 Hz, 1H), 7.57-7.61 (t, J = 16 Hz,
1H), 2.42 (s, 3H, -CH;,C8-H quinoline methyl protons).'*C NMR (100 MHz, CDCl;, & ppm, J Hz):
193.49, 143.53, 143.49, 139.15, 137.03,136.47, 134.61, 129.70, 129.31, 129.26, 129.14,128.93,
128.87, 128.74, 128.66, 128.59, 127.86, 126.46, 126.43, 124.50, 60.47, 57.78, 21.52, 20.92.

15B

'"H NMR (400 MHz, CDCls, 8 ppm, J Hz): 8.34(s, 1H, C4-H), 7.64-7.67 (d, J = 4 Hz, 1H, C5-H),
7.57-7.60 (d, J =4 Hz, 1H, C6-H), 7.74-7.77 (d, /=4 Hz, 2H, C7&C10-H), 7.30- 7.32 (d, J = 8 Hz,
2H, C8&C9-H), 4.84 (s, 1H, chiral-CH-NH), 5.77 (s, 1H, chiral-CH-Br), 6.71-6.73 (d, J = 8 Hz,
1H, p-toluene-NH-), 7.91-7.92 (d, J = 8 Hz, 2H, p-toluene phenyl protons), 7.32-7.35 (d, /= 8 Hz,




2H, p-toluene phenyl protons), 2.43 (s, 3H, p-toluene-CH3), 7.83-7.84 (d, J = 4 Hz, 1H, naphthalene
protons), 7.81 (s, 1H), 7.50-7.52 (t, J = 4 Hz, 1H, naphthalene protons).'*C NMR (100 MHz,
CDCl;, 6 ppm, J Hz): 195.26, 144.98, 140.96, 135.09, 131.10, 128.68, 128.38, 128.27, 127.59,
127.50, 126.97, 126.80, 126.47, 125.81, 125.55, 125.37, 124.58, 124.49, 123.81, 123.18, 123.10,
62.30, 49.69, 21.66.

Fig. S10. ORTEP diagram of the complex Pd(8MOQL?)CI with hydrogen bonding



Fig. S11. ORTEP diagram of the complex Pd(8MOQL#CI with hydrogen bonding
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Fig. S32. 13C NMR spectrum of 6B
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Fig. S34. 13C NMR spectrum of 8B
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Fig. S35. 13C NMR spectrum of 9B
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Fig. S36. 13C NMR spectrum of 10B
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Fig. S37. 13C NMR spectrum of 11B
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Fig. 38. 3C NMR spectrum of 12B
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Fig. S39. 13C NMR spectrum of 13B
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Fig. S40. 13C NMR spectrum of 14B
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Fig. S41. 13C NMR spectrum of 15B
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Fig. S42. Mass spectrum of 2B
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Fig. S43. Mass spectrum of 3B
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Fig. S45. Mass spectrum of 5B
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Fig. S47. Mass spectrum of 8B
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Fig. S49. Mass spectrum of 12B
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Fig. S51. Mass spectrum of 14B
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Fig. S52. Mass spectrum of 15B




Table S1 Crystallographic data of complexes [Pd(SMOQL!2¢4)Cl|

Compound
Empirical
formula
Formula weight
Temperature(K)
Wavelength(A)
Crystal system
Space group
a(A)

b (A)

c(A)

@ (®)

B ()

Y (%)

Volume (A3)

T4

Z

Absorption co-
efficient (mm!)
F(000)

Theta range for
data collection
)

Index ranges

Refinement
method
Final R indices

[/>20(D)]

R indices (all
data)

Pd(8MOQLY)CI
C2H;,CIN,OPdS

474.28

295 K
0.71073
Triclinic

IP _1'
8.4878(8)
11.0977(11)
11.1379(11
111.827(3)
109.312(3)
93.968(3)
1753.1(2)
0.04517

2

1.320

474.7124
4.0360 to 27.9030

10<=h<=-10, 14<=k<=-
13, l4<=1<=-14

Fsqd

R1=0.0553,
wR2 =0.0798

R1=0.0355,
wR2 = 0.0876

Pd(8MOQL?)Cl
Cy3H,3CIN,OPdS

488.30
273(2)
0.71073
Triclinic

VP _ 1V
8.6492(3)
10.9746(4)
11.5173(4)
69.7100(10)
68.7380(10)
89.2470(10)
947.64(6)
0.0404

2

1.252

488.7174
3.7040 to 29.0320

1 1<=h<=-10, 14<=k<=-
13, 14<=1<=0
Fsqd

RI1 = 0.0301,
wR2 = 0.0655

R1=0.0253,
wR2 = 0.0683

Pd(8MOQL*)CI
C1sH,5CIN,OPdS

549.37

295 K
0.71073
Triclinic

IP _1'
7.5069(8)
12.9454(14)
12.9847(14)
61.465(3)
88.838(4)
85.449(4)
1104.8(2)
0.0482

2

1.084

552.7431
3.2440 to 75.8430

9<=h<=-19, 16<=k<=-
16, 16<=1<=-16
Fsqd

R1=0.0980, wR2 =
0.2998

R1=0.0871,
wR2 = 0.3094




Table S2. Selected bond lengths (A) and angles (°) of complexes [Pd(SMOQLY)CI],
[Pd(8MOQL?)CI], [Pd(8MOQL*CI]

BOND LENGTH
Complex Pd(SMOQL)CI Complex Pd(8MOQL2)CI Complex Pd(SMOQL*)Cl
Pd(1)-CI(1) 2.2995(9) Pd(1)-CI(1) 2.3044(5) Pd(1)-CI(1) 2.300(3)
Pd(1)-S(1) 2.2100(9) Pd(1)-S(1) 2.2131(5) Pd(1)-S(1) 2.223(3)
Pd(1)-0(1) 2.059(2) Pd(1)-0(1) 2.0647(15) | Pd(1)-0(1) 2.041(9)
Pd(1)-N(2) 1.983(3) Pd(1)-N(2) 1.9803 Pd(1)-N(3) 1.944(11)
BOND ANGLE
Complex Pd(SMOQL)CI Complex Pd(SMOQL?)CI Complex Pd(SMOQL*)CI
S(1)-Pd(1)-CI(1) | 89.943) | S(1)-Pd(1)-CI(1) | 90.12(2) | CI(1)-Pd(1)-S(1) | 92.96(12)
O(1)-Pd(1)-CI(1) | 91.05(6) | O(1)-Pd(1)-CI(1) | 91.01(4) | NG3)-Pd(1)-S(1) | 84.6(3)
O(1)-Pd(1)-S(1) | 178.35(6) | O(1)-Pd(1)-S(1) | 178.85(4) | N(3)-Pd(1)-CI(1) | 176.7(3)
N(Q)-Pd(1)-Cl(1) | 175.28(8) | N(2)-Pd(1)-CI(1) | 175.43(5) | O(1)-Pd(1)-S(1) | 176.2(3)
N(2)-Pd(1)-S(1) 85.34(8) | N(2)-Pd(1)-S(1) | 85.46(5) | O(1)-Pd(1)-CI(1) | 89.8(3)
N@Q)-Pd(1)-O(1) | 93.67(9) | N(2)-Pd(1)-O(1) | 93.43(6) | O(1)-Pd(1)-N(3) | 92.8(4)
C(1)-S(1)-Pd(1) | 95.92(11) | C(1)-S(1)-Pd(1) | 96.04(7) | C(7)-S(1)-Pd(1) | 96.4(4)
C(11)-0(1)-Pd(1) | 124.11(19) | C(13)-O(1)-Pd(1) | 124.53(13) | N(2)-N(3)-Pd(1) | 123.6(8)
NQB)-NQ)-Pd(1) | 120.552) | N(3)-NQ2)-Pd(1) | 120.76(13) | C(8)-N(3)-Pd(1) | 126.6(8)
C(2)-N(2)-Pd(1) | 124.26(2) | C(3)-N(2)-Pd(1) | 124.40(14) | C(18)-O(1)-Pd(1) | 126.7(8)

Table S3. Hydrogen bonds for Pd(SMOQL!)CI, Pd(8MOQL?2)Cland Pd(8MOQL#)CI [A° and °]

D-H-A d(D-H) | dH-A) | dD-A) | <(DHA)
Complex Pd(8SMOQL!HC1
N(1)-H(1)...0(2) 0.860 1.985 2.827 165.86
N(4)-H...CI(1) 0.859 5.726 5.815 91.68
Symmetry operation: X,y,Z; -X,-y,-Z
Complex Pd(8MOQL?)C1
N(1)-H(1)...0(2) 0.860 2.005 2.824 158.76
N(4)-H...CI(1) 0.860 6.565 5.830 29.14
Symmetry operation: X,y,Z; -X,-Y,~Z
Complex Pd(8MOQL*)C1
N(4)-H(1)...0(2) | 2.740

Symmetry operation: (X, Y, Z); X,Y,Z, -X,-Y,-Z
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Fig. S53. Energy level diagram between HUMO and LUMO of Intermediate C.
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Fig. S54. Energy level diagram between HUMO and LUMO of Intermediate-D1 and Intermediate-
D2.
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Fig. S56. Energy level diagram between HUMO and LUMO of Product P1 and Product P2.
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