Supporting Information for

Reaction between Strontium and steam in the primary circuit of HTR-PM: A theoretical investigation

Jingni Guo¹, Yu Wang¹, Wei Peng¹, Feng Xie^{1,*}, Peng Li², Minghua Lyu³

¹Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China ²School of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China ³Dapartment of Nuclear Environmental Science Research, China Institute for Radiation Protection, Taiyuan 030006, China

*Corresponding author, Email: fxie@tsinghua.edu.cn

Fig. S 1 Structures and selected parameters of stationary points on the SrO+H₂ PES, which were optimized at different levels of theory. Bond distances are in Å, and angles are in degrees. (B3PW91/SDD/6-311G**, B3LYP/Def2QZVPP/6-311G**, from top to bottom rows, respectively)

Fig. S 2 Potential energy profile for the reaction of SrO + H_2 computed at the B3LYP/Def2TZVPP/6-311G** levels of theory in triplet. B3PW91/SDD/6-311G** and B3LYP/Def2QZVPP/6-311G** energy parameters are reported in () and [] respectively.

Fig. S 3 BOD map and NAdO of Sr+H₂O

Fig. S3 shows the bond order density (BOD) diagram and the natural adaptation orbital (NAdO) diagram for the Sr+H₂O reaction process. The numbers in the figure are the eigenvalues of the highest occupied NAdO orbitals, with higher values representing larger contributions. In TS1, Sr-H4 is not yet bonded, and in Compound II, Sr-H4 tends to form a single bond. In TS2, molecule H₂ is close to forming and H3-H4 shows strong covalent interactions.

Fig. S 4 LOL color filled map of the stationary points on the Sr+H₂O reaction pathway computed at the B3PW91/SDD/6-311G** levels of theory (Dark blue balls are the (3, -1) BCPs, brown lines are the paths connecting (3, -3) and (3, -1))

Fig. S 5 The TDOS, PDOS (s orbital and O, H atom), and OPDOS (s orbital with O, H atom) curves of the stationary points on the $Sr+H_2O$ reaction pathway at the B3PW91/SDD/6-311G** levels of theory (a) compound I (b) TS1 (c) compound II (d) TS2 (e) compound III (f) TS3

Fig. S 6 The TDOS, PDOS (Sr atom and O, H atom), and OPDOS (Sr atom with O, H atom) curves of the stationary points on the $Sr+H_2O$ reaction pathway at the B3PW91/SDD/6-311G** levels of theory (a) compound I (b) TS1 (c) compound II (d) TS2 (e) compound III (f) TS3

	SrO			SrOH			
Method	r(Sr-O) Frequencies		r(Sr-O)	Frequencies			
Expt	1.920	653.5	2.111	363.7	363.7	527.0	3766±10
B3LYP[a]	1.948	669.0	2.113	420.0	420.0	552.2	3941.8
B3LYP-D3[a]	1.948	669.1	2.113	419.6	419.6	553.6	3944.0
B3LYP[b]	1.923	675.8	2.101	358.9	358.9	549.9	3933.6
B3LYP-D3[b]	1.923	675.9	2.100	358.6	358.6	551.3	3935.8
B3LYP[c]	1.927	668.6	2.103	385.5	385.5	547.6	3939.4
B3LYP-D3[c]	1.927	668.7	2.103	385.1	385.1	549.0	3941.7
PBE[a]	1.955	649.6	2.104	396.3	396.3	550.3	3842.8
PBE-D3[a]	1.955	649.7	2.104	396.2	396.2	550.9	3843.7
PBE[b]	1.929	656.9	2.091	336.1	336.1	549.0	3833.9
PBE-D3[b]	1.929	656.9	2.090	336.0	336.0	549.6	3834.8
PBE[c]	1.934	648.8	2.093	363.8	363.8	546.2	3840.0
PBE-D3[c]	1.934	648.8	2.093	363.8	363.8	546.8	3840.8
PBE0[a]	1.925	695.5	2.100	430.7	430.7	562.0	4005.0
PBE0-D3[a]	1.925	695.5	2.100	430.9	430.9	562.4	4005.6
PBE0[b]	1.899	701.7	2.085	373.8	373.8	559.5	3996.0
PBE0-D3[b]	1.899	701.8	2.086	374.1	374.1	560.0	3996.6
PBE0[c]	1.904	694.3	2.088	396.8	396.8	557.8	4002.2
PBE0-D3[c]	1.904	694.3	2.088	397.0	397.0	558.3	4002.7
B3PW91[a]	1.929	691.8	2.103	425.4	425.4	558.1	3976.8
B3PW91-D3[a]	1.929	691.9	2.103	425.5	425.5	559.2	3978.4
B3PW91[b]	1.906	696.7	2.089	369.4	369.4	556.0	3967.9
B3PW91-D3[b]	1.906	696.7	2.089	369.6	369.6	557.2	3969.4
B3PW91[c]	1.910	689.8	2.091	392.3	392.3	554.2	3974.1
B3PW91-D3[c]	1.910	689.8	2.091	392.5	392.5	555.4	3975.7

Table S 1 Comparison of experiment values and calculated bond lengths and harmonic frequencies for SrO and SrOH.

[a] Calculations used the SDD for Sr and 6-311G** for H and O atoms.

[b] Calculations used the Def2QZVPP for Sr and 6-311G** for H and O atoms.

[c] Calculations used the Def2TZVPP for Sr and 6-311G** for H and O atoms.

	atom	Х	у	Z
I (1A)	Sr	-0.00000400	-0.54558200	0.00000000
	0	-0.00000400	1.95855600	0.00000000
	Н	-0.78292700	2.53196000	0.00000000
	Н	0.78310900	2.53171000	0.00000000
TS1 (1A)	Sr	-0.46372100	-0.00774000	-0.00000500
	0	1.70754800	-0.11865700	0.00007000
	Н	2.66870000	-0.08885600	-0.00039800
	Н	1.29232100	1.33221900	0.00002200
II (1A)	Sr	-0.38453700	-0.06386800	0.00002400
	0	1.73914800	0.07857900	-0.00027000
	Н	2.66359300	0.32543500	0.00142300
	Н	-1.96437200	1.47292500	-0.00016000
TS2 (1A)	Sr	0.39084100	-0.01904300	-0.00001100
	0	-1.56118200	-0.32201200	0.00002900
	Н	-1.40094300	1.28825400	0.00007900
	Н	-0.96156100	2.01147700	0.00009200
I (3A)	Sr	0.00799400	-0.52858300	0.00000000
	0	0.00799400	1.89911000	0.00000000
	Н	-0.93556500	2.20111300	0.00000000
	Н	0.56786200	2.69214800	0.00000000
TS1 (3A)	Sr	-0.48399900	-0.00414500	-0.00001300
	0	1.76007400	-0.11263700	0.00005000
	Н	2.71907200	-0.15606100	0.00007700
	Н	1.59228100	1.21467600	0.00000300

Table S 2 Optimized cartesian x, y, z coordinates for the reaction of $Sr+H_2O$ at the B3LYP/Def2TZVPP/6-311G** level of theory.

)0
0
0
0
00
0
0
0
00
0
0
0

*Calculated results at B3PW91/SDD/6-311G**

		SR (Hartree)	SR + SO [*] (Hartree)	SO contribution (kcal/mol)
S.,	Electric energy	-30.6953641	-30.6971598	-1.13
51	G(T)	-30.7116920	-30.7134880	-1.13
Compound I	Electric energy	-107.1651081	-107.1669033	-1.13
	G(T)	-107.1692800	-107.1710750	-1.13
Compound II	Electric energy	-107.1917527	-107.1935670	-1.14
	G(T)	-107.2026480	-107.2044620	-1.14
SrO	Electric energy	-105.9359248	-105.9377686	-1.16
	G(T)	-105.9570270	-105.9588710	-1.16

Table S 3 Electric energy and G(T) of Sr atom, Compound I, Compound II and SrO

* The calculation was used B3LYP/dhf-TZVPP-2c/6-311G**

with relativistic effects

		SR	SR + SO	SO contribution
	R(1,2)	2.5026	2.5026	0.00E+00
	R(2,3)	0.9709	0.9709	0.00E+00
Compound I	R(2,4)	0.9709	0.9709	0.00E+00
Compound I	A(1,2,3)	126.2099	126.2094	-5.00E-04
	A(1,2,4)	126.1573	126.1569	-4.00E-04
	A(3,2,4)	107.6327	107.6337	1.00E-03
	R(1,2)	2.125	2.1249	-1.00E-04
	R(1,4)	2.2059	2.2058	-1.00E-04
Compound II	R(2,3)	0.9573	0.9573	0.00E+00
	A(2,1,4)	132.8663	132.8432	-2.31E-02
	A(1,2,3)	168.521	168.5149	-6.10E-03
SrO	R(1,2)	1.9216	1.9215	-1.00E-04

Table S 4 Structures of Compound I, Compound II and SrO with relativistic effects

* The calculation was used B3LYP/dhf-TZVPP-2c/6-311G**

		ADCH			Mullike	n	
Compound	Atom	A 4	Populatio	on of angular		N-4	
	Atom	Atomic		orbitals			Net
		charge	S	р	d		charge
	Sr1	-0.1779	3.9064	6.0502	0.1117	10.0683	-0.0683
	O2	-0.4946	3.7376	4.7498	0.0082	8.4956	-0.4956
Compound I	Н3	0.3362	0.6544	0.0636	0.0000	0.7180	0.2820
	H4	0.3362	0.6544	0.0636	0.0000	0.7180	0.2820
	Sr1	0.4454	3.2090	6.0505	0.3709	9.6305	0.3695
TC 1	O2	-0.4696	3.8091	4.8341	0.0050	8.6482	-0.6482
151	Н3	0.3138	0.6517	0.0640	0.0000	0.7157	0.2843
	H4	-0.2896	0.9885	0.0171	0.0000	1.0056	-0.0056
	Sr1	1.3622	2.3533	6.2538	0.5270	9.1340	0.8660
Commonwed II	O2	-1.0736	3.8169	4.9912	0.0042	8.8122	-0.8122
Compound II	Н3	0.4191	0.6778	0.0657	0.0000	0.7435	0.2565
	H4	-0.7077	1.3083	0.002	0.0000	1.3103	-0.3103
	Sr1	0.9328	2.1550	6.1738	0.8706	9.1993	0.8007
TS2	O2	-0.8202	3.9526	4.8314	0.0033	8.7874	-0.7874
	Н3	-0.0351	0.8010	0.0241	0.0000	0.8251	0.1749
	H4	-0.0775	1.1788	0.0094	0.0000	1.1882	-0.1882
Compound III	Sr1	0.2373	2.8496	6.2604	0.3261	9.4360	0.56397
	O2	-0.4873	3.8172	4.9335	0.0043	8.7550	-0.75501
	Н3	0.3029	0.6528	0.0645	0.0000	0.7173	0.28271
	H4	-0.0529	1.0873	0.0044	0.0000	1.0917	-0.09168
TC2	Sr1	0.2539	2.8707	6.1960	0.3896	9.4563	0.5437
	O2	-0.5511	3.8127	4.9816	0.0041	8.7984	-0.7984
155	Н3	0.2840	0.6774	0.0663	0.0000	0.7437	0.2563
	H4	0.0133	1.0016	0.0001	0.0000	1.0017	-0.0017

Table S 5 Atomic charge analysis based Mulliken method and ADCH method of Sr +

 H_2O computed at the B3PW91/SDD/6-311G** levels of theory

For 2-parameters fit:

$$k_{Arrhenius} = A \exp\left(-\frac{E_a}{RT}\right) \#(1)$$

For 3-parameters fit:

$$k_{Arrhenius} = A T^n \exp\left(-\frac{E_a}{RT}\right) \#(2)$$

		А	E _a (KJ/mol)	А	E _a (KJ/mol)	n
I→TS1→II	k _{VTST}	3.53E+11	99.17	4.08E+19	113.79	-2.39
	k _{VTST} -Wigner	3.07E+11	96.89	8.45E+18	110.38	-2.21
	k _{VTST} -Eckart	2.60E+11	95.16	1.01E+17	105.29	-1.66
II→TS2→P	k _{VTST}	2.10E+12	269.62	9.10E+13	272.59	-0.49
	k _{VTST} -Wigner	2.05E+12	269.29	6.29E+13	271.98	-0.44
	k _{VTST} -Eckart	1.98E+12	269.25	4.05E+13	271.63	-0.39

Table S 6 Arrhenius fitting parameters of rate constants