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Table S1. A assignment of peaks in Fourier transform infrared (FTIR) analysis and their
correlation to functional groups in lignin.

Frequency (cm™) Assignments

1030 C—O(H) + C-O(C) (first order aliphatic OH and ether
1270 C—0 stretching vibration of secondary alcohol
1462 Lignin (C-H bending in CH; and CH3;)
1513 C—C stretching (aromatic skeleton
1590 Aromatic skeletal vibration
1660 Lignin (C=0 stretching)
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Fig S1. FTIR Spectrum of alkali lignin of multiple batches.
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Table. S2. Yields of obtained lignin.

Biomass Chemical composition Solid Lignin Lignin
feedstock recovery % | removal % | yield %
loading Cellulose% Hemicellulose% Lignin

%
Raw 34 29.7 17.5
Biomass
(Tectona
Grandis)
Batch 1 67.3 14.4 4.8 50.6 85.2 13.88
Batch 2 63.6 13.6 6.8 50.4 85.2 19.58
Bacth 3 58.4 17.4 5.9 55 80 18.54

The chemical composition of prior to and following pretreatment was assessed using the
NREL analytical technique.! The contents of cellulose and hemicellulose were determined
based on the total quantities of their component monomers. The relevant calculation
equations are stated as follows.

Lignin content in pretreated solids (%)

Solids recovery (%) X — _ :
Lignin yield (%)= Lignin content in raw biomass (%)

Mpretreated X Plignin

Lignin removal (%) = ( - Mlignin of raw biomass) x 100

Table S3. NMR assignments of major interlinks in 2D-HSQC NMR spectra of lignin.

| Label | 8c/8y(ppm) | Assignments
Bg 53.7/3.37 Cp-Bg in phenylcoumaran
Cs 54.2/3.06 Cp-Bg in Bg- Bg: resinol
-OCHj; 56.0/3.74 C-H in methoxyls
Ay 60.9/3.38 Cy-Hy in y-hydroxylated p-O-4’
By 62.4/3.63 Cy-Hy in phenylcoumaran
Ay 64.7/3.94 Cy-Hy y-acetylated B-O-4°
Cy 70.1/3.94 Cy-Hy in B- B’ resinol
Aa 72.35/4.85  Co-Ha in B-O-4 substructures (A)
Ag(H) 81.3/4.61 Cp-Bg in B-O-4’ linked to a H-unit
Ap(G) 84.3/4.29 Cp-Bg in f-O-4’ linked to a G-unit
Ca 85.7/4.62 Co-Ha in B-B’ resinol
Ag(H) 81.3/4.61 Cp-Bg in B-O-4’ linked to a H-unit
Ap(G) 84.3/4.29 Cp-Bg in B-O-4’ linked to a G-unit
Ca 85.7/4.62 Coa-Ha in B-B’ resinol
Ag(S) 86.0/4.14 Cp-Bg in B-O-4’ linked to a S-unit
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4),

BO4’

Sx6 104.4/6.71
S 104.7/7.36
G, 112.0/7.68
PCAg and FA; 116.7/6.39

Gs 115.9/6.69
Ge 119.3/6.77
PCA; s 115.4/6.68
Hae 128.6/7.04
PCA,¢ 130.7/7.49
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Fig S2. Main lignin inter-unit linkage, chemical structures of monolignol, and of the derived

units
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Fig. S3. Digital photographs of the P10-L0 , PL solutions (lignin concentrations are 3 wt% , Swt%,
Twt%, and 9 wt% , respectively.
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Fig. S4. Histogram depicting the distribution of nanofiber diameters and the curve
representing the lognormal distribution of lignin-PVDF with different concentrations
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Fig S5. The standard deviation of the diameters of nanofibers in PLNF composites with
different lignin content.

Table S4. Lignin-PVDF with various concentrations and observations of nanofiber of
different average diameters and standard deviation.

PVDF Lignin (wt%) Observations Average Standard
(Wt%) Diameter (nm) Deviation
P10-L3 10 3 Uniform fibers 488.2 153.9244
P10-L5 10 5 Uniform fibers 505.3 175.4753
P10-L7 10 7 Beads on strings 586.7 276.7745
P10-L9 10 9 Beads on strings 2338.996 386.9155

Fig S6. FESEM images along with their corresponding EDS elemental maps. (A) Pure
PVDF NF, (B) P10-L5, (C) P10-L7, and (D) P10-L9
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Fig S7. Dielectric Constant and Dielectric Loss of P10-L0, P10-L3, P10-L5, P10-L7, P10-L9

nanofibers

Table S5. The Dielectric Constant and Dielectric Loss of PLNF-TENGs with different
compositions.

Dielectric Constant Dielectric Loss
P10-L0O 323 0.01
P10-L3 5.92 0.06
P10-L5 12.97 0.03
P10-L7 9.97 0.06
P10-L9 4.33 0.05
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Fig S8. The correlation plot between dielectric constant and output voltage of PLNF composites.



Table S6. The Comparison of the performance of TENGs from various

materials, including

biomaterials.
Materials Fabrication Contact Condition | Current Voltage Power Sustainability References
method area S Density
(mW/m?)
TiO,NP Electrospinning | 10 cm x 10 | 5-10 Hz —1.61 pA 111V 2344 mW | Biocompatibility, 2
cm m Mechanical durability
chitosan- Casting 3 x4 cm? 3Hz, 5Hz, | 1.02 pA 150V 15.7 mW/m? | skin-attachable 3
diatom 7THz, 10 Hz
PCA Electrospinning | 4x4 cm? 24.45 6 mW/m? Biocompatibility, 4
PNFMTPU \Y% human motion
/CB detection
BNFM
PI/TPU- Electrospinning | - 4Hz/5kPa 092V - Fingertip interaction 3
TPU force detection,
pronunciation sensing,
human motion and
finger gesture
recognition
CMCSCM | Electrospinning | 9 cm? 2Hz 20 nA 3V 120 mWm2 | Water soluble 6
C-Na
CANF Electrospinning 1.27 cm? 3N, 4Hz 0.4 mA/m? | 25V 16 mW/m? Tactile and proximity | 7
sensing
PEI-GO in | Casting 3 and 6 cm 1.0-6.0Hz | 6.6 pA 222V 407 fully bioderived 8
CS mW/m?)
Lignin/PV Electrospinning | 2x2 cm? 1Hz,3Hz,5 | 0.74 pA 74V 60 mW/m? Sustainable Material This work
DF Hz Innovation, Green
filler, Excellent
Durability, Cost-
effective approach.

Abbreviations: TiO,-Titanium dioxide; PCA-homogeneous PLA/CS/aloin,

nanofiber membrane,

TPU-Thermoplastic polyurethanes,

PNFM-porous

CB-Carbon black, CMCS-

Carboxymethyl chitosan, CMC-Na carboxymethyl cellulose sodium, CANF- Cellulose acetate

nanofiber, PEI- Polyethylenimine, GO- Graphene Oxide, CS-Chitosan.
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Fig .S9. FESEM images of P10-L5 at an initial stage
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Fig .S10. FESEM images of P10-L5 after 10,000 working cycles.



(a)’Fors 2] (€) [Fows st (@) [Tors §He
0.84 0.8
0.4+ (d)0_4- 0.4
< < <
<
e oo, I 2o
04 0.4
041
-0.84 -0.8
T p s 20 012345678 91011 0 5 & 10
t(s) t(s) t(s)
P10-L5 1Hz| (d P10-L5 3Hz P10-L5 z
(b)B ( )B- (f) 5 5H
4 a1 4
= | 1 =L z
4
4 +#
-8
-8 8
0 5 1o, , 15 20 25 C 1234586 7 8 8 1011 o 2 % & 8 10
t(s) t(s) t(s)

Fig. S11. output voltage and current of P10-L5 TENG at frequencies of 1Hz, 3Hz, and 5Hz.
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Fig. S12. Degradation sensitivity of nanofiber in ambient conditions.
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Fig. S13. Amplification circuit tailored for a TENG .
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