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57 Text S1

58 The process efficiency can be evaluated by the electrical energy per order (EE/O). 

59 EE/O represents the electrical energy required to reduce the pollutant concentration by 

60 one order of magnitude in 1 m3 of wastewater and serves as an important indicator for 

61 assessing the energy consumption level of the degradation process, as shown in Eq (1).

62                                      (1)
𝐸𝐸/𝑂 (𝐾𝑊 ∙ ℎ ∙ 𝑚 ‒ 3) =

𝑈 × 𝐼 × 𝑡
𝑉 × 𝑙𝑜𝑔⁡(𝐶0/𝐶𝑡)
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63 Text S2

64 The formation rate of 1O2 in electrochemical system was determined by reaction 

65 rate of between FFA and 1O2 (k1O2, FFA = 1.2×108 M-1 s-1). The steady-state 

66 concentration of 1O2 ([1O2]ss) can be determined by dividing the observed FFA 

67 degradation rate by the biomolecular reaction rate constant of FFA with 1O2 according 

68 to Eq. (2).

69                                      (2)
[1𝑂2]ss =

ln (𝐹𝐹𝐴0

𝐹𝐹𝐴𝑡
)

𝑑𝑡 𝑘1O2
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70

71 Fig. S1 Mapping images of Co and Sn of Co3O4-SnO2/NF.
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73 Fig. S2 Comparison of TC removal effects in different systems.
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74

75 Fig. S3 The corresponding kinetic curves in different systems.
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77 Fig. S4 Removal of TC in EC+ Co3O4-SnO2/NF + PMS system with different current 

78 density (nature pH, PMS = 2 mM, T = 25℃).
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80 Fig. S5 Removal of TC in EC+ Co3O4-SnO2/NF + PMS system with different PMS 

81 dosage (j = 10 mA/cm2, nature pH, T = 25℃).
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83 Fig. S6 Removal of TC in EC+ Co3O4-SnO2/NF + PMS system with different 

84 temperature (j = 10 mA/cm2, nature pH, PMS = 2 mM).
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86 Fig. S7 HPLC chromatograms of TC before and after degradation in the 

87 PEC+Co3O4-SnO2/NF +PMS system.



13

88
0 40 80 120 160 200

0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0
Time (min)

Run 5Run 4Run 3Run 2Run 1

89 Fig. S8 Stability of the Co3O4-SnO2/NF cathode during TC degradation.
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90

91 Fig. S9 SEM images and elemental mapping of the Co3O4-SnO2/NF after five 

92 degradation cycles.
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94 Fig. S10 Concentrations of leached Co and Sn after five cycles.
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96 Fig. S11 The effect of co-existing (a) anions and (b) cations on TC degradation in the 

97 PEC+Co3O4-SnO2/NF+PMS system.
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99 Fig. S12 The removal efficiencies of TC spiked in the tap water and river water using 

100 the PEC+Co3O4-SnO2/NF+PMS system.
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102 Fig. S13 TOC removal efficiency of the PEC+Co3O4-SnO2/NF+PMS system in real 

103 water matrices.
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106 Fig. S14 UV-vis spectra at 200-450nm in PEC+ Co3O4-SnO2/NF + PMS system.
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108 Fig. S15 Toxicity assessment (a) Fathead minnow LC50 (96 hr). (b) Bioconcentration 

109 factor. (c) Developmental toxicity. (d) Mutagenicity.

https://www.sciencedirect.com/topics/chemistry/bioconcentration-factor
https://www.sciencedirect.com/topics/chemistry/bioconcentration-factor
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110 Table S1 HPLC analysis method for different target pollutants.

111

Target 

pollutant

Wavelength 

(nm)

Temperature 

(℃)

Flow rate 

(mL/min)

Mobile 

phase A

Mobile 

phase B

TC 350 34 0.5
40 % 

Methanol

60% 

0.1% 

formic 

acid

FFA 220 32 0.8
20% 

Methanol
80% H2O



22

112 Table S2 Estimated mass loading of Co3O4-SnO2 composite on NF

Oxide Wt% (from EDS) Mass (mg)
Mass loading 

(mg·cm-2)

Co3O4 65.8% 33.1 3.31

SnO2 34.2% 17.2 1.72

Total 100% 50.3 5.03
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113 Table S3 Specific surface area and pore size of SnO2/NF, Co3O4/NF and Co3O4-

114 SnO2/NF samples.

Sample
BET surface area

(m2/g)

Pore size

(nm)

SnO2/NF 40.5003 10.33150

Co3O4/NF 23.5939 21.12187

Co3O4-SnO2/NF 58.3989 7.61836
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116 Table S4 Pseudo-first-order kinetic parameters (k and R2) for TC degradation in 

117 different systems.

System k (min-1) R2

EC+Co3O4-SnO2/NF 0.0116 0.9931

PMS 0.0245 0.9775

Co3O4-SnO2/NF 0.0011 0.9659

EC+PMS 0.0335 0.9972

EC 0.0085 0.9883

PC+PMS 0.0649 0.9582

Co3O4-SnO2/NF+PMS 0.0823 0.9684

EC+Co3O4-SnO2/NF+PMS 0.1925 0.9741

PEC+Co3O4-SnO2/NF+PMS 0.1828 0.9825

118
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119 Table S5 Pseudo-first-order kinetic parameters (k and R2) for TC degradation in the 

120 EC+PMS+Co3O4-SnO2/NF system under different pH conditions.

pH k (min-1) R2

3 0.1783 0.9885

5 0.1512 0.9530

Natural pH (5.8) 0.1925 0.9741

7 0.1769 0.9850

9 0.1329 0.9558

11 0.0785 0.9676
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122 Table S6 Comparison of EE/O values with other reported PMS-activation systems

Process EE/O (kWh m3 order-1) References

E-PMS-O3 4.338 (Xue et al. 2024)

E/SC-BN/PMS 3.26 (Zhao et al. 2025)

E/Ce(IV)/PMS 3.27 (Liu et al. 2023)

EC/CoFe2O4/PMS 2.51 (Zhang et al. 2022)

EC+Fe3O4-CaO2/NF+PMS 0.76 (Zhao et al. 2025)

PEC+Co3O4-SnO2/NF+PMS 0.6443 This study

https://www.x-mol.com/paperRedirect/1665858668739674112
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