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S1. Materials and instruments

Indium tin oxide glass (SPE) was purchased from Rui Zhi Han Xing Technology
Co., Ltd (Beijing, China). Zinc nitrate hexahydrate (Zn(NOs),-6H,0) was purchased
from Chuandong Chemical Industry Group (Chongqing, China). Dimethylimidazole
(2-mIM)), iron nitrate (Fe(NO3);.9H,0), graphene oxide (GO), uric acid (UA), ascorbic
acid (AA), dopamine hydrochloride (DA), glucose (Glu), urea (Ure), creatinine (Cre),
etc. were obtained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Human Serum AB was purchased from NovoBiotechnology Co., Ltd. (Beijing, China).

The morphology was characterized by field-emission scanning electron
microscope (SEM, Zeiss Gemini 360) and transmission electron microscopy (TEM,
JEOL JEM-F200). The elemental compositions were clarified by X-ray photoelectron
spectroscopy (XPS, Thermo Scientific-K-ALPHA). The atomic sites were determined
by aberration-corrected high-angle annular dark-field scanning transmission electron
microscopy (AC-HAADF-STEM, JEOL JEM-ARM200F). All electrochemical

measurements were performed on a portable electrochemical analyzer (EmStat4R).

S2. Supplementary Figures
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Fig. S3. SEM and TEM images of RGO.
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Fig. S4. SEM and TEM images of FeSACs@RGO.
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Fig. S5. Current of FeSACs@RGO/SPE toward 200 pM UA.
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Fig. S6. Responses of five independent FeSACs@RGO/SPE toward 200 uM UA .
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Fig. S7. Responses of FeSACs@RGO/SPE toward 200 uM UA during 10 repeated
test.

The Fe-N coordination structure and the catalytic performance of FeSACs
distinctly follows the principle of “structure-activity relationship”. Specifically, the
coordination structure could modulate the electronic structure of the Fe active sites
(such as the d-band center position), which not only directly influences its electron
transport capacity but also significantly regulates the adsorption strength for H>O.. The
catalytic mechanism is illustrated in Fig. S8. The H.O: molecule is initially adsorbed
onto the single-metal atom in SAC. Then, the adsorbed H:0: readily undergoes
homolytic cleavage, producing two hydroxyl groups. One hydroxyl group desorbs,
yielding a free hydroxyl radical. The remaining adsorbed hydroxyl reacts with a proton
under acidic conditions, forming a HO molecule attached to the metal center. Finally,

desorption of the H,O molecule regenerates the catalyst to its original state.

H,0*FeSACs HO*FeSACs

Fig. S8. Schematic illustration of the catalytic mechanism of H,O, on FeSACs.
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Fig. S9. The influence of applied potential on H,O, response.
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Fig. S10. Current responses of FeSACs@RGO/SPE toward different substances.
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Fig. S11. Responses of five independent FeSACs@RGO/SPE toward 200 uM H,O0,.
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Fig. S12. Responses of FeSACs@RGO/SPE toward 200 uM H,0, during 10 repeated

test.

Table S1. Comparison of some recent electrochemical sensors for UA detection

Electrode material Linear range (uM) LOD (uM) Ref.
FeNS/MWCNT 5-500 3.26 [1]
CoNiFe,04 4-5280 6.38 [2]
PyTS@Ti;C,Ty 5-100 0.48 [3]
Ce-BTC@MoS, 5-2500 5.00 [4]
MWCNT-COOH 0-1600 3.58 [5]
ENi-hMoS, 100-9000 7.30 [6]
PTA/CeO,@Pt 10-138 1.04 [7]
Co;04 nanosheets 5-200 5.00 [8]
FeSACs@RGO 5-100 3.06 This work

Table S2. Comparison of some recent electrochemical sensors for H,O, detection

Electrode material Linear range (uM) LOD (uM) Ref.
CuO-CeO,/MXene 5-100 1.67 [9]
FeCu-NZs 0.1-3800 0.06 [10]
Co@MOF-808 10-450 1.3 [11]
NiCo0,04-Ti3C, Ty 20-100 6 [12]
Pt1-rGO@PILs 2.3-250 1.5 [13]
FeSACs@RGO 5-4000 5.11 This work




Table S3. Results for UA detection in serum samples

Sample Added (uM)  Found (uM)  Recovery (%) RSD (%)

1 20 20.96 112.85 5.57
2 50 45.16 90.33 4.44
3 100 90.30 90.30 6.45

Table S4. Results for H,O, detection in serum samples

Sample Added (uM)  Found (uM)  Recovery (%) RSD (%)

1 50 48.61 87.96 4.19

2 100 &9.37 89.37 7.78

3 200 197.15 98.58 3.63
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