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S1. Materials and instruments

Indium tin oxide glass (SPE) was purchased from Rui Zhi Han Xing Technology 

Co., Ltd (Beijing, China). Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) was purchased 

from Chuandong Chemical Industry Group (Chongqing, China). Dimethylimidazole 

(2-mIM), iron nitrate (Fe(NO3)3·9H2O), graphene oxide (GO), uric acid (UA), ascorbic 

acid (AA), dopamine hydrochloride (DA), glucose (Glu), urea (Ure), creatinine (Cre), 

etc. were obtained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). 

Human Serum AB was purchased from NovoBiotechnology Co., Ltd. (Beijing, China).

The morphology was characterized by field-emission scanning electron 

microscope (SEM, Zeiss Gemini 360) and transmission electron microscopy (TEM, 

JEOL JEM-F200). The elemental compositions were clarified by X-ray photoelectron 

spectroscopy (XPS, Thermo Scientific-K-ALPHA). The atomic sites were determined 

by aberration-corrected high-angle annular dark-field scanning transmission electron 

microscopy (AC-HAADF-STEM, JEOL JEM-ARM200F). All electrochemical 

measurements were performed on a portable electrochemical analyzer (EmStat4R). 

S2. Supplementary Figures
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Fig. S1. SEM image of FeSACs. 

Fig. S2. High-resolution TEM images of FeSACs. 

Fig. S3. SEM and TEM images of RGO. 
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Fig. S4. SEM and TEM images of FeSACs@RGO. 

Fig. S5. Current of FeSACs@RGO/SPE toward 200 μM UA. 

Fig. S6. Responses of five independent FeSACs@RGO/SPE toward 200 μM UA . 



4

Fig. S7. Responses of FeSACs@RGO/SPE toward 200 μM UA during 10 repeated 

test.  

The Fe-N coordination structure and the catalytic performance of FeSACs 

distinctly follows the principle of “structure-activity relationship”. Specifically, the 

coordination structure could modulate the electronic structure of the Fe active sites 

(such as the d-band center position), which not only directly influences its electron 

transport capacity but also significantly regulates the adsorption strength for H₂O₂. The 

catalytic mechanism is illustrated in Fig. S8. The H₂O₂ molecule is initially adsorbed 

onto the single-metal atom in SAC. Then, the adsorbed H₂O₂ readily undergoes 

homolytic cleavage, producing two hydroxyl groups. One hydroxyl group desorbs, 

yielding a free hydroxyl radical. The remaining adsorbed hydroxyl reacts with a proton 

under acidic conditions, forming a H2O molecule attached to the metal center. Finally, 

desorption of the H2O molecule regenerates the catalyst to its original state.

Fig. S8. Schematic illustration of the catalytic mechanism of H2O2 on FeSACs.  
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Fig. S9. The influence of applied potential on H2O2 response.

Fig. S10. Current responses of FeSACs@RGO/SPE toward different substances. 

Fig. S11. Responses of five independent FeSACs@RGO/SPE toward 200 μM H2O2.
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Fig. S12. Responses of FeSACs@RGO/SPE toward 200 μM H2O2 during 10 repeated 

test.

Table S1. Comparison of some recent electrochemical sensors for UA detection
Electrode material Linear range (μM) LOD (μM) Ref.

FeNS/MWCNT 5-500 3.26 [1]

CoNiFe2O4 4-5280 6.38 [2]

PyTS@Ti3C2Tx 5-100 0.48 [3]

Ce-BTC@MoS2 5-2500 5.00 [4]

MWCNT-COOH 0-1600 3.58 [5]

ENi-hMoS2 100-9000 7.30 [6]

 PTA/CeO2@Pt 10-138 1.04 [7]

Co3O4 nanosheets 5-200 5.00 [8]

FeSACs@RGO 5-100 3.06 This work

Table S2. Comparison of some recent electrochemical sensors for H2O2 detection
Electrode material Linear range (μM) LOD (μM) Ref.

CuO-CeO2/MXene 5-100 1.67 [9]

FeCu-NZs 0.1-3800 0.06 [10]

Co@MOF-808 10-450 1.3 [11]

NiCo2O4-Ti3C2Tx 20-100 6 [12]

Pt1-rGO@PILs 2.3-250 1.5 [13]

FeSACs@RGO 5-4000 5.11 This work
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Table S3. Results for UA detection in serum samples 

Sample Added (μM) Found (μM) Recovery (%) RSD (%)

1 20 20.96 112.85 5.57

2 50 45.16 90.33 4.44

3 100 90.30 90.30 6.45

Table S4. Results for H2O2 detection in serum samples 

Sample Added (μM) Found (μM) Recovery (%) RSD (%)

1 50 48.61 87.96 4.19

2 100 89.37 89.37 7.78

3 200 197.15 98.58 3.63
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