Electronic Supplementary Information

Modulating Hydrophilicity and Conductivity of Covalent Organic Frameworks for Enhanced Oxygen Evolution Reaction

Jierui Yang,^a Huiting Qiu,^a Xin Xiao,^a Long Huang,^a Rong Hu,^a Tong Yang,^a Shuang Meng,^{*a} and Hongming He^{*b}

^a Department of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China.

^b College of Chemistry, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key

Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin

300387, P. R. China.

^{*} Corresponding authors. E-mail: mengshuang@ynnu.edu.cn (S. Meng); hehongminghz@163.com (H. He)

Experimental detail

Material and general method. There was no need to purify pharmaceuticals or chemical reagents before use. Sun Chemical Technology Co. (Shanghai, China) provided the following products: Tp, Tfmb, Nda, mesitylene, and *o*-dichlorobenzene (*o*-DCB). The supplier of acetone was Chongqing Chuandong Chemical (Group) Co., Ltd, located in Chongqing, China. *N*, *N*-Dimethylformamide (DMF), methanol, ethanol, CH₃COOH, Co(CH₃COO)₂·4H₂O, and tetrahydrofuran (THF) were obtained from Guangdong Guanghua Sci-Tech Co., Ltd (Guangdong, China). KOH and KCl were purchased from Xilong Scientific Co., Ltd. in Guangdong, China.

Scanning electron microscope (SEM) from TESCAN MIRA LMS, Czech Republic was used to obtain SEM images, while a Thermo Scientific K-Alpha (Thermo Fisher Scientific, USA) was used to perform X-ray photon-electron spectroscopy (XPS) measurements. The X-ray diffraction (XRD) spectra were collected on a Rigaku Ultima IV (Rigaku, Japan). A Nicolet 670 Fourier Transform-Infrared Spectrometer (FT-IR) (Nicolet, America) was used to record FTIR spectra (KBr), and a Quantachrome Autosorb IQ3 (Quantachrome Instruments, USA) was used to measure N₂ adsorption-desorption isotherms and pore size distributions at 77 K. A Discovery SDT 650 (TA, America) was used to obtain thermogravimetric analysis curves. A contact angle goniometer (JY-82C, Chengde Dingsheng Testing Machine Testing Equipment Co., Ltd. China) was used to measure the water contact angle.

Synthesis

COF-Tfmb₅₀ was used as an example. 63.3 mg of Tp (0.3 mmol), 35.6 mg of Nda (0.225 mmol), and Tfmb (0.225 mmol, 72.3 mg) were ultrasonically dispersed in 6 mL of a mixture of o-dichloroethane and mesitylene (1:1, 6 mL). Then, 0.6 mL of 6 M acetic acid was added. After three freeze-extract-thaw cycles, the tubes were sealed and heated at 120 °C for 3

days. The precipitate was collected via filtration, separated, and washed with methanol and DMF. The COF-Tfmb₅₀ was synthesized and subsequently purified using THF and acetone Soxhlet extraction for 24 hours. The resulting yellow powder was dried under vacuum at 80°C for 12 hours, yielding a final product with 83% purity. COF-Tfmb₀, COF-Tfmb₃₃, COF-Tfmb₆₇, and COF-Tfmb₁₀₀ were synthesized using the same procedure as COF-Tfmb₅₀ by varying the amounts of Nda and Tfmb according to the molar ratio.

A mixture of 100 mg of COF-Tfmb_x and 100 mg of Co(CH₃COO)₂·4H₂O was mixed in 10 mL of ethanol (EtOH). The suspension was kept for 12 hours at 50 °C while being agitated at 200 rpm. To get the Co-COF-Tfmb_x, the resulting product was filtered out, cleaned with deionized water and EtOH, and dried at 60 °C under vacuum.

Electrochemical Characterization

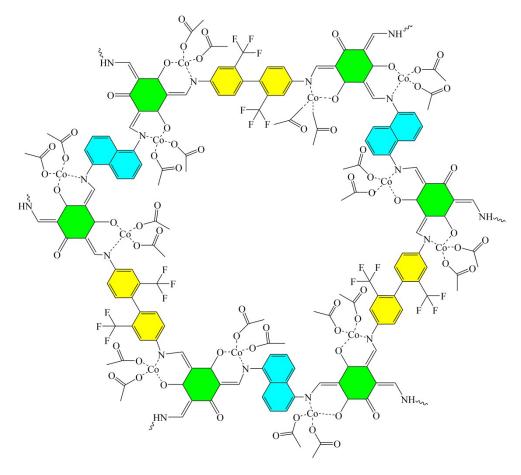
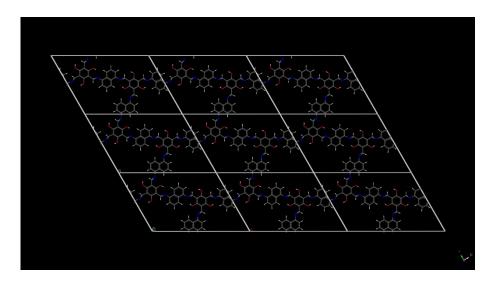
All electrochemical measurements were performed in 1 M KOH solution (pH = 14) using a CHI 660E electrochemical workstation. Electrochemical characterization was performed in a standard three-electrode electrochemical cell using graphite rods and Ag/AgCl (1 M KOH) as counter and reference electrodes, respectively, and a sample-coated glassy carbon (GC) electrode as the working electrode. The potentials of all measurements were calibrated to RHE according to the following equation: $E_{RHE} = E_{Ag/AgCl} + 0.1989 \text{ V} + 0.059 \text{ pH}$, and the current densities were normalized to the effective geometric surface area of the Co-COF-Tfmb_x-coated GCs. Linear sweep voltammetry (LSV) measurements were confidently performed to determine the OERs at a scanning rate of 5 mV/s and corrected to 95% iR. Tafel plots were derived from the obtained polarization OER curves and confidently fitted to the equation $\eta = b \log j + a$ (where η is overpotential, j is current density, b is Tafel slope, and a is Tafel constant). Electrochemical impedance spectroscopy (EIS) was confidently performed at a potential of 1.60 V from 10⁵ Hz to 0.01 Hz with an AC voltage of 5 mV. Electrode stability was confidently assessed by chronopotentializing the electrode during 24

Electronic Supplementary Information (ESI)

hours of continuous OER electrolysis.

The working electrode material was prepared as follows: the prepared Co-COF-Tfmb_x material (1 mg) was dispersed in a Nafion mixture (ethanol: water: 5% Nafion = 100 μ L: 100 μ L: 10 μ L). After approximately 60 minutes of sonication, 2.4 μ L of the mixture was dropped onto a glassy carbon electrode (3 mm effective diameter). Finally, room temperature drying of the working electrodes was performed. The glassy carbon electrodes were meticulously polished with aluminum oxide powder of 1.5 μ m, 500 nm, and 50 nm to ensure a pristine electrode surface before use.

.

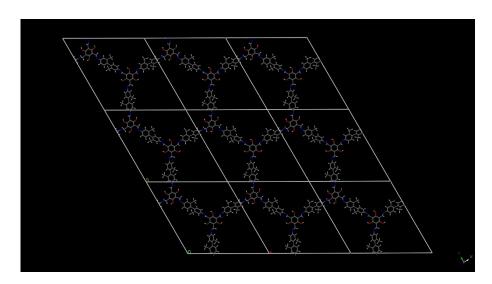

Figure S1. Structure of the Co-COF-Tfmb $_{x}$ complex.

Figure S2. Comparison Color COF-Tfmb_x and Co-COF-Tfmb_x.

Figure S3. Structural Simulation of Co-COF-Tfmb₀ (calculated: a=26.1165, b=18.0868, c=3.5505 Å).

Figure S4. Structural Simulation of Co-COF-Tfmb₁₀₀ (calculated: a=26.1165, b=18.0868, c=3.5505 Å).

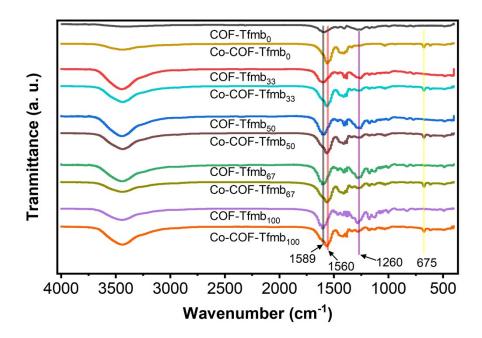
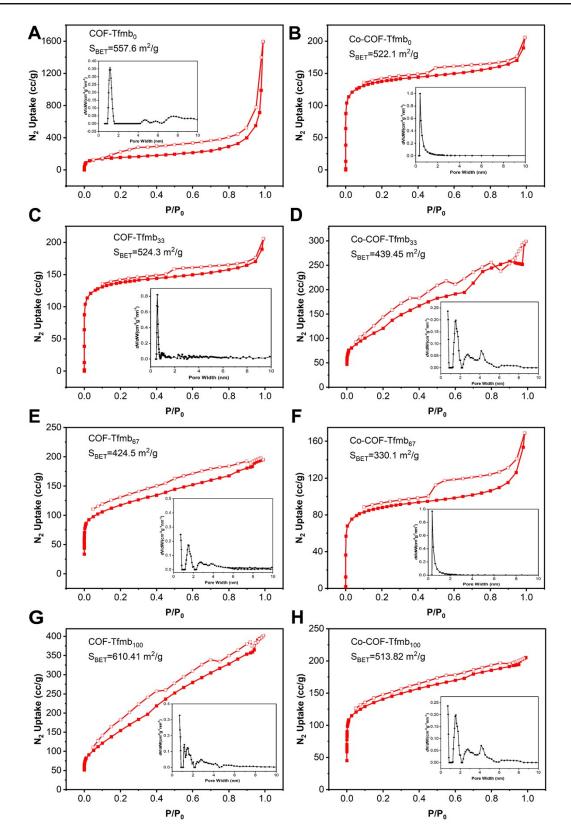
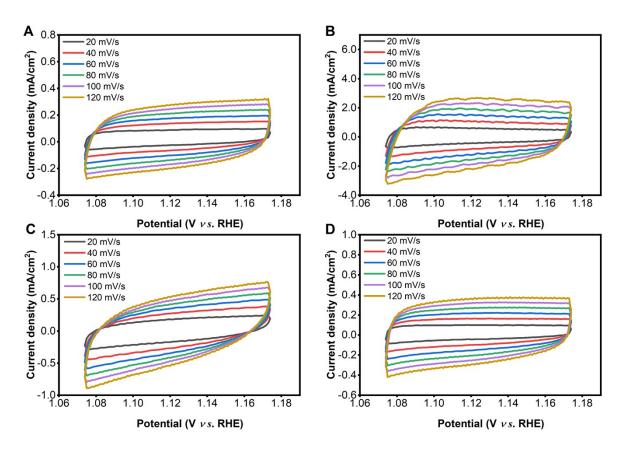




Figure S5. FT-IR spectra of COF-Tfmb_x before and after cobalt modification.

Figure S6. Structural tautomerization of keto to enol for coordination of Co²⁺ with N-salicylideneaniline moiety.

Figure S7. N₂ sorption isotherms of (A) COF-Tfmb₀, (C) COF-Tfmb₃₃, (E) COF-Tfmb₆₇ (G) COF-Tfmb₁₀₀, (B) Co-COF-Tfmb₀, (D) Co-COF-Tfmb₃₃, (F) Co-COF-Tfmb₆₇, (H) Co-COF-Tfmb₁₀₀. Insets in (A-H) are the pore-size distributions.

Figure S8. Cyclic voltammetry of (A) Co-COF-Tfmb₀, (B) Co-COF-Tfmb₃₃, (C) Co-COF-Tfmb₆₇ and (D) Co-COF-Tfmb₁₀₀ at different scan rates in 0.1 M phosphate buffer in the non-Faradaic potential region 0.1 M phosphate buffer solution.



Figure S9. TEM of Co-COF-Tfmb₅₀ after OER reaction.

Table S1 Quantitative table of elemental contents (C, N, O, F, Co) from XPS for all five samples

Sample	C%	N%	Ο%	F%	Co%
COF-Tfmb ₀	55.19	2.04	32.77	0.5	9.5
COF-Tfmb ₃₃	56.84	1.94	30.96	1.98	8.28
COF-Tfmb ₅₀	60.89	2.38	26.18	3.99	6.56
COF-Tfmb ₆₇	64.42	2.98	23.11	4.33	5.16
COF-Tfmb ₁₀₀	58.69	2.88	25.31	6.6	6.53

Table S2 Activity and stability of Co-COF-Tfmb₅₀ compared to that of other similar materials reported previously.

Sample	Electrolyt	Performance		
	e	Activity	Stability	
Co-COF-	1 М КОН	E = 362 mV at 10 mA	Decreased to 93% after 24 h	This
Tfmb ₅₀		cm ⁻²	test	Wor
		Tafel = 53 mV dec^{-1}		k
COF-C ₄ N	1 M KOH	E = 349 mV at 10 mA	Decreased to 83.61% after 20	1
		cm ⁻²	h test	
		Tafel = 64 mV dec ⁻¹		
C ₄ -SHz COF	1 M KOH	E = 320 mV at 10 mA	work efficiently for more than	2
		cm ⁻²	11 h at of 10 mA cm ⁻²	
		Tafel = 39 mV dec^{-1}		
JUC-630	1 M KOH	E = 400 mV at 10 mA	not available	3
		cm ⁻²		
		Tafel = 104 mV dec^{-1}		
Со-ТрВру	0.1 M	E = 400 mV at 1 mA	Decrease to 10% after 24 h	4
	Phosphate	cm ⁻²	test	
	buffer	Tafel = 59 mV dec^{-1}		
		$TOF = 0.23s^{-1}$		

Macro TpBpy-	0.1 M	E = 380 mV at 10 mA Slight negative shift (38 mV		5
Со	КОН	cm ⁻²	shift of the overpotential at 10	
		Tafel = 54 mV dec^{-1}	mA cm ⁻²) after 40000 s test	
Ni _{0.5} Fe _{0.5} @COF-	0.1 M	E = 308 mV at 10 mA	Maintain current densities	6
SO_3	КОН	cm ⁻²	after 15 h test at 20, 50, and	
		Tafel = 83mV dec^{-1}	100 mA cm ⁻²	
CoS ₂ @BP-COP	1 M KOH	E = 270 mV at 10 mA	slight increase of 17 mV after	7
		cm ⁻²	24 h	
		Tafel = 36 mV dec^{-1}		
Co@COF-Pyr	1 M KOH	E = 450 mV at 10 mA	Increased by 6 mV again after	8
		cm ⁻²	1000 cycles	
		Tafel = 100 mV dec^{-1}		
COF-TpDb-TZ-	1 M KOH	E = 390 mV at 10 mA	Increases by 2 mV after 1000	9
Со		cm ⁻²	cycles	
		Tafel = 82mV dec^{-1}		
NiPcCOF	1 M NaOH	E = 410 mV at 10 mA	Decreased by merely 0.5%	10
		cm ⁻²	after 100 h test	
		Tafel = 75 mV dec^{-1}		
COF-366-	1 M NaOH	E = 358 mV	The η10 in the LSV profile	11
Co@CNT-0.4		Tafel = 62 mV dec^{-1}	almost remains unchanged	
			after 2000 cycles	
CoFeCOP/CNT-	0.1 M	E = 440 mV at 10 mA	The current density of	12
700	КОН	cm ⁻²	CoFeCOP/CNT-700 is about	
		Tafel = 98 mV dec^{-1}	10 mA cm ⁻² with little loss in	
			the 40,000 s test	
JUC-627-	1 M KOH	E = 275 mV at 10 mA	Assessed at a current density	13
NS@G-2		cm ⁻²	of 10 mA cm ⁻² for 12 h and	
		Tafel = 132 mV dec^{-1}	rise 7 %	

		•		
IISERP-COF2-β	0.1 M	E = 258 mV at 10 mA slightly improved after		14
	КОН	cm ⁻²	potential scanning 500 cycles	
		Tafel = 38.9 mV dec^{-1}	in Faradaic region (0.9–1.45	
			V)	
Ni ₃ N +	1 M KOH	E = 230 mV at 10 mA	stable current could be	15
amorphous C +		cm ⁻²	generated over 20 h	
IISERP-COF3		The amount of O ₂		
		evolved (230 mmol h ⁻¹		
		g ⁻¹)		
Co ₃ O ₄ /NPC-2	1 M KOH	E = 330 mV at 10 mA	shows no obvious loss of	16
		cm ⁻²	current density after 3000 th	
		Tafel = 79 mV dec^{-1}	cycles	
Fe-SAC@COF	1 M KOH	E = 290 mV at 10 mA	maintains a stable current	17
		cm ⁻²	density at around 10 mA cm ⁻²	
		Tafel = 40 mV dec^{-1}	for 24 h	
O-Ni ₃ Fe-N-C	0.1 M	E = 328 mV at 10 mA	Retain current desty after a	18
	КОН	cm ⁻²	long time operation (almost 75	
		Tafel = 52 mV dec^{-1}	h)	

References

- C. Yang, Z. Yang, H. Dong, N. Sun, Y. Lu, F. Zhang, G. Zhang, ACS Energy. Lett., 2019, 4 (9), 2251-2258.
- S. Mondal, B. Mohanty, M. Nurhuda, S. Dalapati, R. Jana, M. Addicoat, A. Datta, B. Jena,
 A. Bhaumik, ACS Catal., 2020, 10 (10), 5623-5630.
- 3. W. Xia, C. Ji, R. Wang, S. Qiu, Q. Fang, Acta Phys-Chim. Sin., 2023, 39 (9), 2212057.
- 4. H. Aiyappa, J. Thote, D. Shinde, R. Banerjee, S. Kurungot, Chem. Mater., 2016, 28 (12),

- 4375-4379.
- X. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Ye, C. Schlesiger, S. Praetz, J. Schmidt, A. Thomas, *J. Am. Chem. Soc.*, 2019, **141** (16), 6623-6630.
- 6. X. Feng, Z. Gao, L. Xiao, Z. Lai, F. Luo, Inorg. Chem. Front., 2020, 7 (20), 3925-3931.
- 7. Q. Ma, R. Liao, Y. Lu, S. Liu, Y. Tang, Y. Zhu, D. Wu, *Chem Asian. J.*, 2021, **16 (20)**, 3102-3106.
- 8. Y. Zhao, Y. Yang, T. Xia, H. Tian, Y. Li, Z. Sui, N. Yuan, X. Tian, Q. Chen, ChemSusChem., 2021, 14 (20), 4556-4562.
- 9. Y. Liang, T. Xia, Z. Wu, Y. Yang, Y. Li, Z. Sui, C. Li, R. Fan, X Tian, Q. Chen, *Mater. Today. Chem.*, 2022, **24**, 100777.
- J. Jarju, A. Díez, L. Frey, V. Sousa, E. Carbó-Argibay, L. Gonçalves, D. Medina, O. Lebedev, Y. Kolen'ko, L. Salonen, *Mater. Today. Chem.*, 2022, 26, 101032.
- 11. Z. Gan, S. Lu, L. Qiu, H. Zhu, H. Gu, M. Du, Chem. Eng. J., 2021, 415, 127850.
- 12. S. Liu, L. Xiao, G. Wang, G. Liu, Y. Mo, W. Lu, Mater. Today. Sustain., 2023, 22, 100389.
- R. Wang, Z. Zhang, J. Suo, L. Liao, L. Li, Z. Yu, H. Zhang, V. Valtchev, S. Qiu, Q. Fang, *Chem. Eng. J.*, 2023, 478, 147403.
- 14. D. Mullangi, V. Dhavale, S. Shalini, S. Nandi, S. Collins, T. Woo, S. Kurungot, R. Vaidhyanathan, *Adv. Energy. Mater.*, 2016, **6 (13)**, 1600110.
- 15. S. Nandi, S. Singh, D. Mullangi, R. Illathvalappil, L. George, C. Vinod, S. Kurungot, R. Vaidhyanathan, *Adv. Energy. Mater.*, 2016, **6 (24)**, 1601189.
- G. Zhuang, Y. Gao, X. Zhou, X. Tao, J. Luo, Y. Gao, Y. Yan, P. Gao, X. Zhong, J. Wang,
 Chem. Eng. J., 2017, 330, 1255-1264.
- X. Wang, L. Sun, W. Zhou, L. Yang, G. Ren, H. Wu, W. Deng, Cell Rep. Phy. Sci., 2022,
 3 (3), 100804.

H. Meng, B. Wu, T. Sun, L. Wei, Y. Zhang, B. Liu, K. Chen, Z. Wang, S. Sun, C. Wang,
 X. Zhang, *Nano Res.*, 2023, 16 (5), 6710-6720.