
1

Supporting Information

Synthesis, photophysical, theoretical and electrochemical 
evaluation of a new Rhodamine-ChalcogenoAmino-Thymidine 

(RhoCAT) hybrid derivative

Table of Contents

Chemistry

General Considerations………………...…………..………….……….……..........S2

General Methods…….......……………………………....…………..…….…..S3-S29

Photophysical Analysis………………;;;;;;;;;;…………………………….S10–S21

Density Functional Theory………………………………………………...S22–S29

Electrochemical Study……………………………………………………..S29–S30

ROS Generation……………………………………………………………..S30–S41

NMR and HRMS Charts…......……………………..........…...…...…........S42-S52

References…………………………………………………………………....S52-S53

Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2026



2

CHEMISTRY

General Considerations

All Chemicals were of analytical grade and obtained from standard commercial 

suppliers and some reactions were run under an atmosphere of dry argon. Proton 

nuclear magnetic resonance spectra (1H NMR) were obtained at 400 MHz in a Bruker 

DPX400 and at 600 MHz in a Bruker Avance III NMR spectrometer. Spectra were 

recorded in CDCl3 solution. Chemical shifts are reported in ppm, referenced to the 

solvent peak of tetramethylsilane (TMS) as the external reference. Data are reported 

as follows: chemical shift (δ) expressed in ppm, multiplicity (br = broad, s = singlet, d 

= doublet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dt = doublet 

of triplets, t = triplet, m = multiplet, q = quartet), and coupling constant (J) in Hertz and 

integrated intensity. Carbon-13 nuclear magnetic resonance (13C NMR) spectra were 

obtained either at 100 MHz in a Bruker DPX400 and at 150 MHz in a Bruker Avance 

III NMR spectrometer. Chemical shifts (δ) are reported in ppm, referenced to the 

solvents peak of CDCl3. High-resolution mass spectra (HRMS) were obtained on a 

LTQ Orbitrap Discovery mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany). This hybrid system combines an LTQ XL linear ion-trap mass spectrometer 

and an Orbitrap mass analyzer. The experiments were performed via direct infusion of 

the sample (flow rate 10 mL/min) in positive-ion mode using electrospray ionization 

(ESI). Elemental composition calculations were executed using the specific tool 

included in the Qual Browser module of the Xcalibur (Thermo Fisher Scientific, release 

2.0.7) software. Thin layer chromatography (TLC) was performed using Merck Silica 

Gel GF254, 0.25 mm. For visualization, TLC plates were either placed under ultraviolet 

light, or stained with iodine vapor, or acidic vanillin.
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General Methods

Synthetic Procedures

Preparation of 5’-Arylchalcogenyl-3’-N-(E)-Rhodamine-3’,5’-dideoxy-
aminothymidine (5a-i)

In a two-necked round-bottom flask under argon atmosphere, Rhodamine B (2 eq.), 

TsCl (3.5 eq.) and dichloromethane (10 mL) were added and the reaction mixture was 

stirred for 15 min. Then, DMAP (5 eq.) was added and the reaction was left under 

stirring for 15 min. Next, a solution of compound 3a-i (1 mmol) in dichloromethane (5 

mL) was slowly added to the reaction mixture. Then, the mixture was stirred at reflux 

temperature until the consumption of compound 3a-i (3 h; monitored by TLC - 

DCM:EtOH, 2.5 %). At the end of the reaction time, a saturated aqueous solution of 

sodium bicarbonate (10 mL) was added and then the mixture was extracted with ethyl 

acetate (3 x 20 mL). The resulting organic phase was dried over anhydrous MgSO4, 

filtered and the solvent was evaporated. The crude product was purified by flash 

chromatography on silica gel with a gradient system until the pure product was 

obtained (DCM:EtOH 2.5 %).
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5’-S-(Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5a)

Physical properties: Pink solid

 m.p.: 123-125°C, 

Yield: 60%

HRMS [TOF MS ES+] m/z calculated for C44H47N5O5S 

[M+H]+: 758.3371; found [M+H]+: 758.3379.

1H NMR (600 MHz. CDCl3), δ (ppm): 8.40 (s, 1H), 8.02 – 

7.86 (m, 1H), 7.57 – 7.45 (m, 2H), 7.37 (d, J = 8.2 Hz, 2H), 

7.15 – 7.08 (m, 1H), 7.06 – 7.02 (m, 3H), 6.48 (t, J = 6.6 

Hz, 1H), 6.44 – 6.38 (m, 4H), 6.32 – 6.23 (m, 2H), 4.82 – 

4.69 (m, 1H), 3.55 – 3.48 (m, 1H), 3.33 (h, J = 8.4, 7.7 Hz, 

8H), 2.92 (dd, J = 13.3, 3.5 Hz, 1H), 2.74 (dt, J = 13.8, 6.8 Hz, 1H), 2.22 (dd, J = 13.2, 

4.3 Hz, 1H), 1.70 (s, 3H), 1.61 (ddd, J = 14.0, 10.6, 5.9 Hz, 1H), 1.17 (td, J = 7.1, 3.1 

Hz, 12H).

13C NMR (150 MHz. CDCl3), δ (ppm): 167.4, 163.5, 158.5, 153.5, 152.8, 149.8, 148.9, 

136.1, 132.8, 131.9, 131.7, 131.5, 128.7, 128.4, 126.8, 124.0, 122.8, 114.4, 110.4, 

108., 98.20, 97.3, 85.3, 79.5, 65., 55.31, 54.2, 44.4, 38.1, 36.5, 12.5.

5’-S-(4-Methyl-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5b)

Physical properties: Pink solid 

 m.p.: 115-116°C, 

Yield: 70%

HRMS [TOF MS ES+] m/z calculated for C45H49N5O5S 

[M+H]+: 772.3527; found [M+H]+: 772.3535.

1H NMR (400 MHz. DMSO), δ (ppm): 8.04 (s, 1H), 7.94 – 

7.86 (m, 1H), 7.56 – 7.44 (m, 2H), 7.22 – 7.16 (m, 2H), 7.13 

– 7.04 (m, 2H), 7.04 – 6.92 (m, 2H), 6.55 (t, J = 6.7 Hz, 1H), 

6.47 – 6.37 (m, 4H), 6.33 – 6.22 (m, 2H), 4.79 (ddd, J = 7.2, 
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4.3, 3.0 Hz, 1H), 3.69 – 3.60 (m, 1H), 3.33 (p, J = 7.1 Hz, 8H), 2.86 (dd, J = 13.6, 3.1 

Hz, 1H), 2.66 (ddd, J = 13.8, 6.9, 5.3 Hz, 1H), 2.26 (s, 3H), 2.14 (dd, J = 13.6, 4.3 Hz, 

1H), 1.72 – 1.54 (m, 3H), 1.16 (td, J = 7.1, 4.7 Hz, 12H).

13C NMR (100 MHz. DMSO), δ (ppm): 167.3, 163.4, 153.5, 153.5, 152.6, 149.7, 136.2, 

136.1, 132.7, 131.8, 131.2, 129.7, 128.7, 128.4, 127.0, 124.0, 122.8, 110.3, 108.5, 

98.3, 97.8, 84.7, 78.8, 65.8, 55.2, 44.5, 36.2, 30.5, 20.9, 12.5, 12.1.

5’-S-(4-Methoxy-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5c)

Physical properties: Pink solid 

m.p.: 103-107°C, 

Yield: 65%

HRMS [TOF MS ES+] m/z calculated for C45H49N5O6S 

[M+H]+: 788.3476; found [M+H]+: 788.3482.

1H NMR (600 MHz.CDCl3), δ(ppm): 8.17 (s, 1H), 7.90 (dd, 

J = 5.8, 3.0 Hz, 1H), 7.47 (dd, J = 5.8, 3.0 Hz, 2H), 7.16 – 

7.11 (m, 3H), 7.10 – 7.05 (m, 1H), 6.78 – 6.72 (m, 2H), 6.61 

(t, J = 6.8 Hz, 1H), 6.44 – 6.40 (m, 2H), 6.39 – 6.35 (m, 1H), 

6.29 – 6.23 (m, 2H), 4.71 (ddd, J = 7.5, 4.6, 2.7 Hz, 1H), 3.76 (s, 3H), 3.74 – 3.68 (m, 

1H), 3.33 (dq, J = 20.5, 7.1 Hz, 8H), 2.79 (dd, J = 13.9, 3.0 Hz, 1H), 2.64 (ddd, J = 

14.0, 6.8, 4.6 Hz, 1H), 2.13 (dd, J = 13.9, 4.8 Hz, 1H), 1.72 (s, 3H), 1.71 – 1.65 (m, 

1H), 1.16 (dt, J = 16.9, 7.0 Hz, 12H).

13C NMR (150 MHz. CDCl3), δ(ppm): 167.4, 163.5, 158.5, 153.4, 152.8, 149.8, 148.9, 

136.1, 132.8, 131.9, 131.7, 131.5, 128.7, 128.4, 126.8, 124.0, 122.8, 114.4, 110.4, 

108.4, 98.2, 97.3, 85.3, 79.5, 65.8, 55.3, 54.2, 44.4, 38.1, 36.6, 12.5.
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5’-S-(4-Chloro-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5d)

Physical properties: Pink solid 

 m.p.: 125-129°C, 

Yield: 76%

HRMS [TOF MS ES+] m/z calculated for C44H46ClN5O5S 

[M+H]+: 792.2981; found [M+H]+: 792.2985.

1H NMR (600 MHz. CDCl3), δ (ppm) 8.31 (s. 1H). 7.91 (q. 

J = 4.2. 3.8 Hz. 1H). 7.48 (q. J = 4.0 Hz. 2H). 7.14 (d. J = 

8.3 Hz. 2H). 7.10 – 7.08 (m. 1H). 7.05 (d. J = 8.3 Hz. 2H). 

6.99 (s. 1H). 6.64 – 6.53 (m. 1H). 6.40 (dt. J = 27.1. 7.2 Hz. 

3H). 6.31 – 6.22 (m. 2H). 4.76 (dt. J = 7.7. 3.7 Hz. 1H). 3.73 

(dt. J = 11.5. 5.7 Hz. 1H). 3.33 (dt. J = 25.1. 7.3 Hz. 8H). 2.86 (dd. J = 13.8. 3.1 Hz. 

1H). 2.66 (dt. J = 12.9. 6.2 Hz. 1H). 2.16 (dd. J = 13.9. 4.6 Hz. 1H). 1.85 (dtt. J = 28.1. 

22.3. 8.7 Hz. 1H). 1.70 (s. 3H). 1.16 (dt. J = 20.1. 7.1 Hz. 12H).

13C NMR (151 MHz. CDCl3), δ (ppm): 167.4, 163.5, 153.4, 149.8, 149.1, 135.9, 135.3, 

132.9, 131.6, 129.6, 129.4, 128.8, 128.8, 128.5, 124.0, 122.9, 110.5, 108.4, 107.3, 

98.2, 97.8, 85.3, 78.9, 65.8, 54.2, 44.4, 36.1, 14.6, 12.5, 12.3.

5’-Se-(Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5e)

Physical properties: Pink solid

m.p.: 114-115°C, 

Yield: 84%

HRMS [TOF MS ES+] m/z calculated for C44H47N5O5Se 

[M+H]+: 806.2820; found [M+H]+: 806.2822.

1H NMR (400 MHz. CDCl3), δ (ppm): 8.02 (s, 1H), 7.95 – 

7.86 (m, 1H), 7.55 – 7.40 (m, 2H), 7.33 – 7.27 (m, 2H), 7.18 

– 7.08 (m, 4H), 7.04 (d, J = 1.3 Hz, 1H), 6.54 (t, J = 6.6 Hz, 

1H), 6.49 – 6.35 (m, 4H), 6.29 (dt, J = 9.1, 3.2 Hz, 2H), 4.88 
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– 4.76 (m, 1H), 3.72 – 3.60 (m, 1H), 3.33 (dt, J = 14.0, 6.9 Hz, 7H), 2.92 (dd, J = 13.6, 

3.0 Hz, 1H), 2.73 – 2.62 (m, 1H), 2.16 (dd, J = 13.6, 4.2 Hz, 1H), 1.69 – 1.62 (m, 1H), 

1.61 (d, J = 1.2 Hz, 3H), 1.16 (td, J = 7.1, 4.0 Hz, 12H).
13C NMR (150 MHz. CDCl3), δ (ppm): 167.2, 163.7, 153.4, 153.3, 152.4, 149.8, 135.9, 

132.7, 131.6, 130.8, 130.4, 128.7, 128.7, 128.6, 128.3, 126.1, 123.9, 122.7, 110.2, 

98.1, 97.6, 84.5, 78.5, 60.5, 55.0, 44.4, 35.9, 29.9, 12.4, 12.1.

5’-Se-(4-Methyl-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5f)

Physical properties: Pink solid 

m.p.: 95-96°C, 

Yield: 96%

HRMS [TOF MS ES+] m/z calculated for C45H49N5O5Se 

[M+H]+: 820.2977; found [M+H]+: 820.2985.

1H NMR (600 MHz. CDCl3), δ (ppm): 8.09 (s, 1H), 7.91 (dd, 

J = 6.0, 2.9 Hz, 1H), 7.48 (dt, J = 8.7, 3.9 Hz, 2H), 7.19 (d, 

J = 8.3 Hz, 2H), 7.12 – 7.08 (m, 1H), 7.07 (s, 1H), 6.99 – 

6.94 (m, 2H), 6.56 (t, J = 6.6 Hz, 1H), 6.45 – 6.41 (m, 2H), 

6.39 (d, J = 4.0 Hz, 1H), 6.27 (d, J = 9.3 Hz, 2H), 4.81 – 4.76 (m, 1H), 3.66 – 3.64 (m, 

1H), 3.33 (dd, J = 11.3, 7.2 Hz, 8H), 2.87 (dd, J = 13.6, 2.6 Hz, 1H), 2.65 (dd, J = 13.3, 

6.4 Hz, 1H), 2.26 (s, 3H), 2.12 (dd, J = 13.4, 4.1 Hz, 1H), 1.74 (t, J = 7.5 Hz, 1H), 1.62 

(s, 3H), 1.16 (q, J = 7.3 Hz, 12H).

13C NMR (151 MHz. CDCl3), δ (ppm): 167.3, 163.4, 153.5, 153.4, 152.6, 149.7, 136.1, 

132.7, 131.7, 131.1, 129.7, 128.7, 128.7, 128.4, 126.9, 124.0, 122.8, 110.3, 108.4, 

98.2, 97.7, 84.6, 78.8, 65.8, 55.1, 44.4, 36.2, 30.4, 20.9, 12.5, 12.1.
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5’-Se-(4-MethoxyPhenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5g)

Physical properties: Pink solid

m.p.: 121-123°C, 

Yield: 82%

HRMS [TOF MS ES+] m/z calculated for C45H49N5O6Se 

[M+H]+: 836.2926; found [M+H]+: 836.2931.

1H NMR (400 MHz. DMSO), δ (ppm): 8.06 (s, 1H), 7.96 – 

7.84 (m, 1H), 7.46 (dd, J = 5.6, 3.1 Hz, 2H), 7.16 – 7.11 (m, 

3H), 7.10 – 7.05 (m, 1H), 6.77 – 6.71 (m, 2H), 6.59 (t, J = 

6.7 Hz, 1H), 6.46 – 6.36 (m, 3H), 6.33 – 6.24 (m, 2H), 4.72 

(ddd, J = 6.6, 4.8, 2.9 Hz, 1H), 3.76 (s, 3H), 3.71 (ddd, J = 11.1, 6.6, 4.9 Hz, 1H), 3.32 

(dq, J = 11.3, 7.1 Hz, 8H), 2.78 (dd, J = 13.9, 3.0 Hz, 1H), 2.65 (ddd, J = 13.8, 6.8, 4.9 

Hz, 1H), 2.16 (dd, J = 13.9, 4.9 Hz, 1H), 1.75 – 1.62 (m, 4H), 1.15 (dt, J = 9.8, 7.1 Hz, 

12H).

13C NMR (100 MHz. DMSO), δ (ppm): 167.4, 163.4, 158.6, 153.5, 153.5, 152.8, 149.8, 

136.1, 132.8, 131.8, 128.8, 128.8, 128.4, 126.9, 124.0, 122.8, 114.5, 110.4, 108.5, 

98.4, 97.9, 85.4, 79.6, 65.8, 55.3, 54.4, 44.5, 38.2, 36.5, 12.6, 12.3.

5’-Se-(4-Chloro-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5h)
Physical properties: Pink solid

m.p.: 136-139°C, 

Yield: 72%

HRMS [TOF MS ES+] m/z calculated for C44H46ClN5O5Se 

[M+H]+: 840.2428; found [M+H]+: 840.2436.

1H NMR (600 MHz. CDCl3), δ (ppm): 8.96 (m, 1H), 7.93 – 

7.90 (m, 1H), 7.47 (dd, J = 6.1, 2.8 Hz, 2H), 7.22 – 7.19 (m, 

2H), 7.12 – 7.07 (m, 3H), 7.01 (d, J = 1.4 Hz, 1H), 6.55 (t, 

J = 6.6 Hz, 1H), 6.45 – 6.38 (m, 4H), 6.27 (td, J = 8.9, 2.6 

Hz, 2H), 4.82 (ddd, J = 7.2, 4.3, 3.1 Hz, 1H), 3.68 – 3.64 
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(m, 1H), 3.33 (dq, J = 14.0, 7.1 Hz, 8H), 2.88 (dd, J = 13.3, 3.1 Hz, 1H), 2.72 – 2.67 

(m, 1H), 2.21 – 2.17 (m, 1H), 1.69 (d, J = 1.3 Hz, 3H), 1.68 – 1.63 (m, 1H), 1.16 (q, J 

= 7.3 Hz, 12H).

13C NMR (150 MHz. CDCl3), δ (ppm):167.4, 163.7, 153.5, 152.6, 149.9, 149.0, 135.9, 

132.8, 132.4, 132.3, 131.6, 129.1, 128.9, 128.8, 128.7, 128.4, 124.0, 122.8, 110.5, 

108.4, 98.2, 97.7, 84.7, 78.5, 65.8, 55.1, 44.5, 35.7, 30.6, 12.5, 12.3.

5’-Te-(Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5i)

Physical properties: Pink solid

m.p.: 117-120°C, 

Yield: 14%

HRMS [TOF MS ES+] m/z calculated for C44H47N5O5Te 

[M+H]+: 856.2717; found [M+H]+ : 856.2724.

1H NMR (600 MHz. CDCl3), δ (ppm): 8.94 (d, J = 10.3 Hz, 

1H), 7.92 (dd, J = 5.7, 3.1 Hz, 1H), 7.47 (dd, J = 5.7, 3.0 

Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 7.09 (dd, J = 5.6, 3.0 Hz, 

1H), 7.06 – 7.03 (m, 2H), 7.00 (s, 1H), 6.57 (t, J = 6.7 Hz, 

1H), 6.43 (t, J = 9.6 Hz, 3H), 6.38 (d, J = 2.5 Hz, 1H), 6.31 – 6.24 (m, 2H), 4.80 – 4.75 

(m, 1H), 3.73 (ddd, J = 11.6, 6.7, 5.1 Hz, 1H), 3.32 (dq, J = 22.2, 7.1 Hz, 8H), 2.85 (dd, 

J = 13.8, 3.0 Hz, 1H), 2.72 – 2.64 (m, 1H), 2.20 (ddd, J = 13.8, 4.8, 2.7 Hz, 1H), 1.71 

(s, 3H), 1.69 (d, J = 2.9 Hz, 1H), 1.15 (dt, J = 18.0, 7.0 Hz, 12H).

13C NMR (150 MHz. CDCl3), δ (ppm): 167.3, 163.7, 153.4, 152.5, 149.8, 148.9, 135.8, 

135.3, 132.7, 131.5, 131.3, 129.2, 128.6, 128.3, 123.9, 122.7, 110.4, 108.3, 105.1, 

104.5, 97.9, 97.6, 85.2, 78.8, 65.7, 54.1, 44.3, 35.9, 12.4, 12.2.
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Photophysical analysis
The UV-Vis electronic absorption spectroscopy of compounds 5a-i was recorded using 

a Shimadzu UV-2600 spectrophotometer (data interval, 1.0 nm) using three solvents 

(DCM, EtOH and DMSO) according to the distinct dielectric constant (ε0). All absorption 

spectra were recorded in the 250–650 nm range at a fixed concentration of 20 μM. 

Steady-state fluorescence emission spectra of 5a-i in the same solvents were 

measured with a Horiba Yvon-Jobin Fluoromax Plus spectrofluorometer (Em/Exc; slit 

1.0 mm) in the 350–650 nm range at a fixed concentration of 2.0 μM. Fluorescence 

quantum yield values (Φf) of the studied compounds were determined by comparing 

the corrected fluorescence spectra with that of 9,10-diphenylanthracene standard 

probe in CHCl3 solution (Φf = 65%; λexc = 365 nm) using the appropriate equation 

according to the literature[1]. 

Fluorescence lifetime values (τf) of 5a-i were recorded using the Time-Correlated 

Single Photon Counting (TCSPC) method with a DeltaHub controller and Horiba 

spectrofluorometer. The data were processed using the DAS6 and OriginPro® 8.5 

software, utilizing mono-exponential fitting of the raw data. A NanoLED (Horiba) source 

(1.0 MHz; pulse width <1.2 ns; 284 nm excitation wavelength) was used as the 

excitation source.
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Figure S1. Absorption UV-Vis spectra of studied derivatives in DCM, using fixed 

concentration at 20 µM.
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Figure S2. Absorption UV-Vis spectra of studied derivatives in EtOH, using fixed 

concentration at 20 µM.
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Figure S3. Absorption UV-Vis spectra of studied derivatives in DMSO, using fixed 

concentration at 20 µM.
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Figure S4. Normalized steady-state fluorescence emission spectra of studied 

derivatives in DCM, using fixed concentration at 2.0 µM, excited in the less energy 

transition band.
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Figure S5. Normalized steady-state fluorescence emission spectra of studied 

derivatives in EtOH, using fixed concentration at 2.0 µM, excited in the less energy 

transition band.
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Figure S6. Normalized steady-state fluorescence emission spectra of studied 

derivatives in DMSO, using fixed concentration at 2.0 µM, excited in the less energy 

transition band.
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Figure S7. Normalized fluorescence decay plots of studied derivatives in DCM, using 

fixed concentration at 2.0 µM, excited by NanoLED source at 284 nm.
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Figure S8. Normalized fluorescence decay plots of studied derivatives in EtOH, using 

fixed concentration at 2.0 µM, excited by NanoLED source at 284 nm.
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Figure S9. Normalized fluorescence decay plots of studied derivatives in DMSO, using 

fixed concentration at 2.0 µM, excited by NanoLED source at 284 nm.
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Table S1. Photophysical parameters of derivatives in several solvents.
Compound Solvent* λ, nm (ε; M−1cm−1)a λem, nm (Φf, %)b,c ΔλSS (nm/cm−1)d τf, ns (χ2)e kr (x107 s˗1)f τr (ns)f knr (x107 s˗1)f τnr (ns)f

DCM 274 (45680); 317 (14420) 456 (12.0) 139/9615 11.7 (0.92110) 1.02 97.5 7.52 13.3

5a EtOH 272 (48250); 316 (14020) 525 (1.5) 209/12595 4.20 (0.84629) 0.36 280.0 23.4 4.25

DMSO 258 (54525); 317 (17970) 510 (14.0) 193/11940 22.2 (0.95500) 0.63 158.5 3.87 25.8

DCM 275 (50460); 319 (15365) 455 (12.0) 136/9370 10.9 (0.99151) 1.10 90.8 8.07 12.4

5b EtOH 273 (48460); 317 (13310) 514 (1.5) 197/12090 3.85 (0.85830) 0.39 256.0 25.6 3.90

DMSO 276 (55665); 319 (39510) 508 (13.0) 189/11660 23.2 (0.95340) 0.56 178.0 3.75 26.5

DCM 275 (38790); 318 (12190) 455 (11.0) 137/9470 11.6 (0.94616) 0.95 105.4 7.67 13.0

5c EtOH 273 (41785); 316 (9870) 439 (1.0) 123/8865 2.45 (0.90790) 0.41 245.0 40.4 2.45

DMSO 274 (38450); 326 (22715) 509 (14.0) 183/11030 23.1 (0.94830) 0.60 165.0 3.70 27.0

DCM 273 (50565); 318 (13785) 455 (11.0) 137/9470 10.6 (0.92374) 1.04 96.4 8.40 11.9

5d EtOH 272 (48145); 318 (11790) 513 (1.5) 195/11955 4.00 (0.97165) 0.37 266.0 24.6 4.05

DMSO 259 (61570); 314 (15910) 510 (14.0) 196/12240 22.6 (0.93550) 0.62 161.0 3.80 26.0

DCM 274 (60945); 319 (17490) 455 (12.0) 136/9370 10.5 (0.97729) 1.14 87.5 8.40 11.9

5e EtOH 273 (45520); 319 (10370) 492 (1.5) 173/11020 4.30 (0.97130) 0.35 286.0 22.9 4.35

DMSO 265 (48880); 319 (16810) 507 (14.0) 188/11625 23.7 (0.94151) 0.59 169.0 3.60 27.5

DCM 274 (49075); 319 (13875) 453 (11.0) 134/9270 9.75 (0.99110) 1.13 88.6 9.13 10.9

5f EtOH 274 (56240); 319 (18650) 446 (1.0) 127/8925 2.45 (0.87850) 0.41 245.0 40.4 2.45

DMSO 274 (52220); 317 (20280) 509 (13.0) 192/11900 23.2 (0.95340) 0.56 178.0 3.75 26.5

DCM 274 (46320); 318 (11865) 456 (11.0) 138/9515 10.0 (0.98480) 1.10 91.0 8.90 11.2

5g EtOH 273 (38550); 322 (8350) 461 (2.0) 139/9365 3.30 (0.83150) 0.60 165.0 29.7 3.35

DMSO 274 (69780); 321 (22080) 507 (14.0) 186/11430 n.d. n.d. n.d. n.d. n.d.

DCM 274 (60635); 318 (18650) 453 (11.0) 135/9370 10.3 (0.94025) 1.07 93.6 8.64 11.6
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5h EtOH 272 (39050); 321 (9265) 511 (1.5) 190/11585 n.d. n.d. n.d. n.d. n.d.

DMSO 273 (77355); 321 (28490) 510 (14.0) 189/11540 21.1 (0.83330) 0.66 151.0 4.10 24.5

DCM 273 (52470); 318 (14730) 461 (12.0) 143/9755 7.70 (0.91146) 1.56 64.2 11.4 8.75

5i EtOH 273 (48355); 321 (9370) 500 (1.5) 179/11150 n.d. n.d. n.d. n.d. n.d.

DMSO 259 (69780); 318 (20675) 507 (14.0) 189/11720 13.3 (0.92940) 1.05 95.0 6.45 15.5

DCM 278 (39425); 317 (16635); 557 (23210) 564 (51.0) 7/220 4.35 (0.98530) 11.8 8.53 11.2 8.90

RhB EtOH 274 (10440); 543 (24295) 569 (46.0) 26/840 3.30 (0.98645) 13.9 7.17 16.4 6.10

DMSO 276 (46710); 319 (23485); 415 (12840) 573 (50.0) 158/6645 3.00 (0.98120) 16.6 6.00 16.5 6.00

*Dieletric constant of solventes: DCM (ε = 9.10), EtOH (ε = 24.3), and DMSO (ε = 45.0);

aConcentration at 20 µM; bConcentration at 2.0 µM; 

cUsing 9,10-diphenylanthracene (DPA) as standard molecule in CHCl3 solution (Φf = 65%) with errors at ±5%;

dStokes Shifts (ΔλSS) = λem – λabs (in nm) and (1/λabs) – (1/λem) (in cm‒1); 

eUsing NanoLED at 284 nm as excitation source, with errors at ±10%;

fUsing equations kr = Φf/τf and knr = (1 ‒ Φf)/τf and τr = 1/kr and τnr = 1/knr, with errors at ±10%.
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Theoretical Methodology
The structural and spectroscopic properties of compounds 5a-i, and standard 

rhodamine (RhB) molecule have been studied using the density functional theory 

(DFT), and its time-dependent version. The polarizable continuum model was used to 

implicitly simulate the DCM solvent. The exchange and correlation interactions were 

described by the hybrid PBE0 functional[2]. The molecular orbitals were constructed by 

linear combinations of the all electron 6-311G (d,p) basis set[3]. For the Te atom in the 

5i compound the effective core potential split valence CEP-31G basis set have been 

used[4].

The geometrical structures of compounds 5a-i and RhB were optimized without 

symmetry constraints, and the absorption spectra determined at their ground state 

conformations. All calculations were performed using the Gaussian 09 code[5].

TDDFT Absorption spectra

Figure S10. Absorption spectra for compunds 5a, 5e, and 5i in DCM. The inset 
shows the lowest energy electronic transitions. The vertical lines indicate the precise 
wavelengths and oscillator strengths of the individual electronic transitions for each 

compound.
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TABLE S2: Coordinates of the optimized structures of compounds 5a, 5e, and 
5i

5a

C       -2.336871    5.488499   -0.734613
C       -0.908157    5.972383   -0.477892
N        0.132737    5.164082   -1.098600
C        0.476740    5.456844   -2.484509
C       -0.194115    4.539362   -3.509697
C        0.581631    4.007951   -0.500603
C        0.052709    3.551826    0.734108
C        0.530002    2.397768    1.320091
C        1.535208    1.617277    0.741096
C        2.070302    2.082899   -0.455420
C        1.610640    3.240176   -1.074823
O        3.077858    1.435214   -1.115655
C        3.637472    0.321903   -0.548559
C        3.125431   -0.275254    0.598802
C        3.783272   -1.423837    1.049643
C        4.890063   -1.944268    0.412103
C        5.410152   -1.330734   -0.757265
C        4.753844   -0.174470   -1.213492
N        6.493336   -1.856940   -1.426771
C        7.083875   -1.146550   -2.552988
C        7.225657   -2.992122   -0.880396
C        7.935567    0.066413   -2.169488
C        8.166985   -2.647787    0.276095
H        0.145783    4.791096   -4.519585
H       -1.281971    4.647470   -3.476037
H        0.046371    3.488583   -3.321402
H       -3.048110    6.101279   -0.170671
H       -2.464493    4.444466   -0.431412
H       -2.590427    5.567122   -1.796270
H        8.289321    0.577157   -3.071106
H        8.809001   -0.237978   -1.585545
H        7.361873    0.782400   -1.573343
H        8.635348   -3.557981    0.664872
H        7.627637   -2.163952    1.096320
H        8.959816   -1.970186   -0.053525
H        7.800053   -3.431055   -1.700915
H        6.512556   -3.763346   -0.570934
H        6.288146   -0.845727   -3.243550
H        7.699017   -1.864117   -3.102834
C        1.885410    0.249149    1.282910
N        0.731081   -0.677444    1.067015
C        1.990000    0.224659    2.793995
C        0.996659   -0.578407    3.329869
C        2.894712    0.878790    3.617385
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C        2.771064    0.699162    4.994000
C        1.765812   -0.113246    5.532563
C        0.860283   -0.763061    4.699768
C        0.164289   -1.127296    2.229630
O       -0.840221   -1.821423    2.344692
C        0.256834   -0.902795   -0.277530
C       -0.271319   -2.310453   -0.577933
C       -1.184851   -2.075513   -1.790476
C       -0.886784    0.008755   -0.780099
N       -2.513547   -2.727344   -1.620377
O       -1.348116   -0.689067   -1.940347
C       -1.993086    0.225334    0.247157
Cl      -3.206704    1.421005   -0.390544
C       -4.686578    1.012683    0.508257
C       -5.871461    1.600902    0.048420
C       -7.079373    1.326319    0.676909
C       -7.125083    0.457427    1.766248
C       -5.947044   -0.119314    2.228080
C       -4.726990    0.159248    1.612787
C       -3.689086   -2.013023   -1.584639
C       -4.899069   -2.575007   -1.379784
C       -4.972314   -4.019882   -1.216432
N       -3.741363   -4.669587   -1.331041
C       -2.501349   -4.103971   -1.536211
O       -5.991560   -4.664055   -1.011968
O       -1.478391   -4.766064   -1.630588
H       -0.714423    6.032053    0.597364
H       -0.793387    6.992777   -0.856517
H        1.565983    5.424882   -2.605676
H        0.186521    6.493348   -2.675551
H       -0.748408    4.086048    1.227813
H        0.088368    2.071196    2.258384
H        2.084503    3.519675   -2.006823
H        3.465797    1.199113    5.661932
H        1.693551   -0.233974    6.608745
H        3.673797    1.511110    3.202547
H        0.071604   -1.394694    5.096087
H        3.409012   -1.923601    1.939246
H        5.352766   -2.829695    0.827851
H        5.083937    0.368776   -2.089084
H        1.109738   -0.713759   -0.936870
H       -0.838842   -2.695666    0.268299
H        0.531530   -3.010128   -0.807135
H       -0.760828   -2.468226   -2.716551
H       -1.565768    0.609370    1.174173
H       -2.485781   -0.724631    0.466056
H       -3.823452   -0.288063    2.012407
H       -5.966348   -0.791674    3.080565
H       -8.070497    0.236757    2.251488
H       -7.990309    1.785811    0.305392
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H       -3.750171   -5.678849   -1.247785
H       -0.504044    0.970319   -1.133396
H       -5.848012    2.265023   -0.811524
C       -6.170153   -1.783988   -1.311676
H       -6.616628   -1.847907   -0.313297
H       -6.906968   -2.165732   -2.025950
H       -5.984625   -0.729080   -1.525703
H       -3.569131   -0.946625   -1.734832

5e

C        3.169626   -4.730620   -0.534106
C        1.777849   -5.361528   -0.591620
N        0.772356   -4.568065   -1.285201
C        0.718747   -4.663329   -2.738083
C        1.341037   -3.472919   -3.470199
C        0.047868   -3.605386   -0.622496
C        0.342158   -3.242679    0.715571
C       -0.403670   -2.280576    1.363663
C       -1.454210   -1.595640    0.742284
C       -1.766519   -1.987890   -0.554375
C       -1.041235   -2.960223   -1.235096
O       -2.789891   -1.422542   -1.263864
C       -3.603609   -0.511671   -0.646164
C       -3.317285    0.028075    0.604913
C       -4.221118    0.975496    1.096156
C       -5.347667    1.358086    0.396326
C       -5.633681    0.805870   -0.879012
C       -4.731970   -0.152444   -1.373865
N       -6.730441    1.204984   -1.610495
C       -7.073235    0.530674   -2.855366
C       -7.698487    2.141383   -1.055335
C       -7.720194   -0.845029   -2.677235
C       -8.681040    1.528821   -0.054615
H        1.256281   -3.615691   -4.552464
H        2.398268   -3.365807   -3.211529
H        0.838465   -2.536506   -3.209148
H        3.832919   -5.332181    0.096120
H        3.119104   -3.715548   -0.133644
H        3.611393   -4.670186   -1.534547
H       -7.881076   -1.314925   -3.653071
H       -8.688641   -0.758891   -2.176065
H       -7.086551   -1.507034   -2.079210
H       -9.342663    2.304001    0.345940
H       -8.155638    1.060528    0.783482
H       -9.301834    0.766185   -0.533686
H       -8.253158    2.567963   -1.895770
H       -7.164542    2.979925   -0.595724
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H       -6.174770    0.448598   -3.477108
H       -7.754740    1.186728   -3.403694
C       -2.055951   -0.339213    1.344399
N       -1.043701    0.769248    1.277795
C       -2.232335   -0.470803    2.841974
C       -1.322132    0.337698    3.501847
C       -3.098418   -1.290101    3.551207
C       -3.026543   -1.264942    4.943034
C       -2.103420   -0.448391    5.607285
C       -1.233204    0.364774    4.887572
C       -0.519090    1.089253    2.503176
O        0.425133    1.833929    2.739256
C       -0.630744    1.278253   -0.010455
C       -0.088482    2.715417   -0.044656
C        0.734564    2.732451   -1.342810
C        0.474224    0.491533   -0.745846
N        2.071334    3.359779   -1.160047
O        0.890342    1.404185   -1.765098
C        1.623362    0.039305    0.143426
Se       2.813459   -1.038219   -0.954518
C        4.316490   -1.150172    0.206256
C        5.533160   -1.534767   -0.365822
C        6.672836   -1.647251    0.422557
C        6.612695   -1.367178    1.786503
C        5.401520   -0.984585    2.355147
C        4.252257   -0.881808    1.573642
C        3.236515    2.630702   -1.170780
C        4.456655    3.159700   -0.945378
C        4.557780    4.591727   -0.711480
N        3.330834    5.260736   -0.753545
C        2.076479    4.723108   -0.952301
O        5.590106    5.211539   -0.497856
O        1.056410    5.396338   -0.942825
H        1.415179   -5.573276    0.418712
H        1.832832   -6.331288   -1.097499
H       -0.319183   -4.805815   -3.064078
H        1.247948   -5.578499   -3.016906
H        1.176475   -3.689399    1.240564
H       -0.128697   -2.011655    2.380609
H       -1.349373   -3.193792   -2.246394
H       -3.695492   -1.892355    5.524066
H       -2.067868   -0.453068    6.692124
H       -3.809368   -1.930186    3.037697
H       -0.507791    1.002835    5.382213
H       -4.029856    1.425780    2.066639
H       -6.008388    2.088143    0.845335
H       -4.872963   -0.639400   -2.329634
H       -1.517712    1.238309   -0.651608
H        0.546040    2.910556    0.818563
H       -0.886014    3.457661   -0.064839
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H        0.242596    3.291241   -2.140780
H        1.239913   -0.589061    0.944591
H        2.166547    0.884796    0.571442
H        3.318601   -0.588446    2.041842
H        5.342399   -0.767340    3.417439
H        7.504670   -1.445744    2.400044
H        7.612043   -1.944009   -0.034370
H        3.353546    6.260416   -0.593049
H        0.073704   -0.375672   -1.273767
H        5.591113   -1.735912   -1.432449
C        5.700120    2.321286   -0.924100
H        6.211834    2.409034    0.040220
H        6.408042    2.637623   -1.697475
H        5.451603    1.268087   -1.083326
H        3.117498    1.571541   -1.363118

5i

C        2.859176   -3.967074   -2.754249
C        1.894834   -5.036781   -2.240434
N        0.488609   -4.663305   -2.331330
C       -0.244034   -5.099998   -3.510702
C       -0.063580   -4.229213   -4.758034
C       -0.031659   -3.686161   -1.507438
C        0.602989   -3.330576   -0.288315
C        0.026323   -2.404220    0.555365
C       -1.167395   -1.737836    0.250346
C       -1.775706   -2.082881   -0.950707
C       -1.234195   -3.030786   -1.814583
O       -2.943653   -1.522734   -1.385103
C       -3.562693   -0.585742   -0.607131
C       -3.038155   -0.141728    0.601189
C       -3.778690    0.831963    1.280637
C       -4.973072    1.328015    0.800094
C       -5.507155    0.866899   -0.431649
C       -4.766643   -0.109425   -1.118327
N       -6.684242    1.372011   -0.941728
C       -7.257472    0.820301   -2.161920
C       -7.515626    2.265286   -0.144817
C       -7.956111   -0.530875   -1.987391
C       -8.294982    1.579513    0.980186
H       -0.749055   -4.557729   -5.546470
H        0.956149   -4.303878   -5.147378
H       -0.267572   -3.175805   -4.541850
H        3.892824   -4.313734   -2.652541
H        2.753780   -3.037357   -2.185347
H        2.675115   -3.745613   -3.809190
H       -8.307906   -0.901527   -2.956090
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H       -8.820613   -0.440733   -1.323233
H       -7.277911   -1.276854   -1.561756
H       -8.846261    2.323945    1.564385
H       -7.624530    1.041579    1.657568
H       -9.015339    0.861458    0.577014
H       -8.215716    2.750690   -0.830428
H       -6.892668    3.069112    0.262712
H       -6.472002    0.744235   -2.922072
H       -7.972887    1.553835   -2.544601
C       -1.717801   -0.648020    1.144389
N       -0.747208    0.478538    1.261890
C       -1.827921   -1.080513    2.593874
C       -1.051206   -0.262365    3.397625
C       -2.567511   -2.118938    3.141258
C       -2.499737   -2.310361    4.520359
C       -1.713168   -1.481763    5.330852
C       -0.975685   -0.441421    4.773465
C       -0.360077    0.740683    2.549332
O        0.412069    1.614886    2.928155
C       -0.311379    1.162082    0.066972
C       -0.177105    2.681737    0.147972
C        0.644316    2.964635   -1.106684
C        1.072124    0.732612   -0.498636
N        1.487583    4.155594   -1.010864
O        1.472996    1.835427   -1.316530
C        2.093561    0.447643    0.584173
Te       4.056063   -0.152154   -0.149353
C        3.959610   -2.091257    0.783370
C        4.483351   -3.194329    0.107226
C        4.384601   -4.470519    0.659902
C        3.755289   -4.655760    1.888707
C        3.254974   -3.553030    2.578002
C        3.371592   -2.273550    2.037665
C        2.586989    4.151875   -0.178532
C        3.414446    5.201749   -0.015644
C        3.131868    6.419168   -0.768342
N        2.007475    6.335877   -1.590758
C        1.149485    5.269069   -1.761805
O        3.788402    7.448577   -0.723603
O        0.182512    5.321524   -2.503940
H        2.144708   -5.296739   -1.205705
H        2.019472   -5.956369   -2.819575
H       -1.305143   -5.169212   -3.250579
H        0.076517   -6.123265   -3.732614
H        1.536259   -3.791274    0.012482
H        0.521294   -2.187503    1.498698
H       -1.772634   -3.215619   -2.734878
H       -3.064958   -3.117906    4.975693
H       -1.679341   -1.656445    6.401616
H       -3.177476   -2.762886    2.514863
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H       -0.357983    0.210343    5.383192
H       -3.398556    1.212901    2.225310
H       -5.492491    2.074546    1.386794
H       -5.097396   -0.529549   -2.059033
H       -1.057355    0.929882   -0.700698
H        0.362193    2.975234    1.050680
H       -1.141396    3.193027    0.129321
H        0.008907    3.126882   -1.978758
H        3.000016   -1.426448    2.607539
H        2.780350   -3.683666    3.545957
H        3.662993   -5.651047    2.312217
H        4.789021   -5.321390    0.119311
H        1.778080    7.163325   -2.127776
H        0.968257   -0.141630   -1.148255
H        4.955013   -3.069039   -0.862344
C        4.609497    5.183812    0.888665
H        4.524438    5.955965    1.660546
H        5.526589    5.389180    0.326752
H        4.713966    4.212516    1.379708
H        2.754340    3.214387    0.336843
H        1.761151   -0.409305    1.169194
H        2.208749    1.287553    1.269120

Electrochemical study
Electrochemical analysis by cyclic voltammetry was recorded with a 

potentiostat/galvanostat AutoLab Eco Chemie PGSTAT 128 N system at room 

temperature and under an argon atmosphere in a dry DCM solution. Electrochemical 

grade tetrabutylammonium hexafluorophosphate (0.1 M TBAPF6) was used as a 

supporting electrolyte. The electrochemical cell is composed of three components: 

glassy carbon electrode (working electrode; 5.0 mm, Metrohm®), a Pt auxiliary 

electrode and a Pt pseudo-reference electrode. To monitor the reference electrode, 

the Fc/Fc+ redox couple pair (E1/2 = 0.42 V) was used as an internal reference[6], and 

used SHE (Standard Hydrogen Electrode).
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Figure S11. CV plots of derivatives in DCM solution.

ROS Generation
Singlet oxygen production (1O2) was recorded according to typical 9,10-

diphenylanthracene (DPA) photoxidation assays, with compounds 5a-i, according to 

the literature[7]. In order to measure singlet oxygen generation, absorption UV–Vis 

spectra of each solution were recorded at diferente exposure times (0 to 20 min), using 

red-light diode laser (Thera Laser DMC – São Paulo; potency of 100 mW). The 

photoxidation constant (kpo) and singlet oxygen production quantum yield (ΦΔ) was 

calculated by ln A0/A versus time plots.

For superoxide generation assays, the nitroblue tetrazolium (NBT) experiment was 

used to detect the formation of superoxide radical species (O2•‒) in the presence of 

compounds 5a-i. This approach was carried out using at the same conditions in the 

literature, using NBT and NADH in DMF solution[8]. Control experiments were 

performed in the absence of compounds. Samples were irradiated under aerobic 

conditions using red-light diode laser (Thera Laser DMC – São Paulo; potency of 100 

mW). The progress of the reaction was monitored by following the increase of the 
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absorbance close to 530 nm. The superoxide generation constant (kSO) can be 

obtained from the slope.
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Figure S12. DPA photooxidation assays of compound 5a in DMSO.
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Figure S13. DPA photooxidation assays of compound 5b in DMSO.
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Figure S14. DPA photooxidation assays of compound 5c in DMSO.
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Figure S15. DPA photooxidation assays of compound 5d in DMSO.
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Figure S16. DPA photooxidation assays of compound 5e in DMSO.
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Figure S17. DPA photooxidation assays of compound 5f in DMSO.



36

325 350 375 400 425 450
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ab
s

W avelength (nm )

5g

20 m in

0 m in

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20
 5g
 L inear F it o f Sheet1  ln  A0/A

ln
 A

0 / 
A

T im e (m in)

R 2 =  0 .97918
k po =  8 .12 x 10 -3 M -1s -1

Figure S18. DPA photooxidation assays of compound 5g in DMSO.
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Figure S19. DPA photooxidation assays of compound 5h in DMSO.
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Figure S20. DPA photooxidation assays of compound 5i in DMSO.
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Figure S21. DPA photooxidation assays of compound RhB in DMSO.
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Figure S22. NBT assays of studied compounds in DMF solution.
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NMR SPECTRAS

Figur
e S23. 1H and 13C NMR of the compound 5a in CDCl3 at 600 MHz and 150 MHz 

respectively.
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Figur
e S24. 1H and 13C NMR of the compound 5b in CDCl3 at 400 MHz and 100 MHz 

respectively.
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Figur
e S25. 1H and 13C NMR of the compound 5c in CDCl3 at 600 MHz and 150 MHz 

respectively.



47

Figu
re S26. 1H and 13C NMR of the compound 5d in CDCl3 at 600 MHz and 150 MHz 

respectively.
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Figu
re S27. 1H and 13C NMR of the compound 5e in CDCl3 at 400 MHz and 100 MHz 

respectively.
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Figu
re S28. 1H and 13C NMR of the compound 5f in CDCl3 at 600 MHz and 150 MHz 

respectively.
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Figur
e S29. 1H and 13C NMR of the compound 5g in CDCl3 at 400 MHz and 100 MHz 

respectively.



51

Figur
e S30. 1H and 13C NMR of the compound 5h in CDCl3 at 600 MHz and 150 MHz 

respectively.
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Figur
e S31. 1H and 13C NMR of the compound 5i in CDCl3 at 600 MHz and 150 MHz 

respectively.
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Figure S32. HRMS of 5a (calculated for M+H+: 758.3371). 
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Figure S33. HRMS of 5b (calculated for M+H+: 772.3527). 
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Figure S34. HRMS of 5c (calculated for M+H+: 788.3476).
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Figure S35. HRMS of 5d (calculated for M+H+: 792.2981).
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Figure S36. HRMS of 5e (calculated for M+H+: 806.2820).
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Figure S37. HRMS of 5f (calculated for M+H+: 820.2977).
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Figure S38. HRMS of 5g (calculated for M+H+: 836.2926).
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Figure S39. HRMS of 5h (calculated for M+H+: 840.2428).
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Figure S40. HRMS of 5i (calculated for M+H+: 856.2717).
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