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CHEMISTRY

General Considerations

All Chemicals were of analytical grade and obtained from standard commercial
suppliers and some reactions were run under an atmosphere of dry argon. Proton
nuclear magnetic resonance spectra ("H NMR) were obtained at 400 MHz in a Bruker
DPX400 and at 600 MHz in a Bruker Avance |ll NMR spectrometer. Spectra were
recorded in CDCI; solution. Chemical shifts are reported in ppm, referenced to the
solvent peak of tetramethylsilane (TMS) as the external reference. Data are reported
as follows: chemical shift (&) expressed in ppm, multiplicity (br = broad, s = singlet, d
= doublet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dt = doublet
of triplets, t = triplet, m = multiplet, q = quartet), and coupling constant (J) in Hertz and
integrated intensity. Carbon-13 nuclear magnetic resonance ('3C NMR) spectra were
obtained either at 100 MHz in a Bruker DPX400 and at 150 MHz in a Bruker Avance
[l NMR spectrometer. Chemical shifts (&) are reported in ppm, referenced to the
solvents peak of CDCls. High-resolution mass spectra (HRMS) were obtained on a
LTQ Orbitrap Discovery mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany). This hybrid system combines an LTQ XL linear ion-trap mass spectrometer
and an Orbitrap mass analyzer. The experiments were performed via direct infusion of
the sample (flow rate 10 mL/min) in positive-ion mode using electrospray ionization
(ESI). Elemental composition calculations were executed using the specific tool
included in the Qual Browser module of the Xcalibur (Thermo Fisher Scientific, release
2.0.7) software. Thin layer chromatography (TLC) was performed using Merck Silica
Gel GF254, 0.25 mm. For visualization, TLC plates were either placed under ultraviolet

light, or stained with iodine vapor, or acidic vanillin.



General Methods

Synthetic Procedures

Preparation of 5’-Arylchalcogenyl-3’-N-(E)-Rhodamine-3’,5’-dideoxy-

aminothymidine (5a-i)

In a two-necked round-bottom flask under argon atmosphere, Rhodamine B (2 eq.),
TsClI (3.5 eq.) and dichloromethane (10 mL) were added and the reaction mixture was
stirred for 15 min. Then, DMAP (5 eq.) was added and the reaction was left under
stirring for 15 min. Next, a solution of compound 3a-i (1 mmol) in dichloromethane (5
mL) was slowly added to the reaction mixture. Then, the mixture was stirred at reflux
temperature until the consumption of compound 3a-i (3 h; monitored by TLC -
DCM:EtOH, 2.5 %). At the end of the reaction time, a saturated aqueous solution of
sodium bicarbonate (10 mL) was added and then the mixture was extracted with ethyl
acetate (3 x 20 mL). The resulting organic phase was dried over anhydrous MgSOy,,
filtered and the solvent was evaporated. The crude product was purified by flash
chromatography on silica gel with a gradient system until the pure product was
obtained (DCM:EtOH 2.5 %).



5’-S-(Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5a)

Physical properties: Pink solid

m.p.: 123-125°C,

Yield: 60%

HRMS [TOF MS ES+] m/z calculated for C44H47N505S
[M+H]*: 758.3371; found [M+H]*: 758.3379.

H NMR (600 MHz. CDCls), & (ppm): 8.40 (s, 1H), 8.02 —
7.86 (m, 1H), 7.57 — 7.45 (m, 2H), 7.37 (d, J = 8.2 Hz, 2H),
7.15 — 7.08 (m, 1H), 7.06 — 7.02 (m, 3H), 6.48 (t, J = 6.6
Hz, 1H), 6.44 — 6.38 (m, 4H), 6.32 — 6.23 (m, 2H), 4.82 —
4.69 (m, 1H), 3.55 — 3.48 (m, 1H), 3.33 (h, J = 8.4, 7.7 Hz,

8H), 2.92 (dd, J = 13.3, 3.5 Hz, 1H), 2.74 (dt, J = 13.8, 6.8 Hz, 1H), 2.22 (dd, J = 13.2,
4.3 Hz, 1H), 1.70 (s, 3H), 1.61 (ddd, J = 14.0, 10.6, 5.9 Hz, 1H), 1.17 (td, J = 7.1, 3.1

Hz, 12H).

13C NMR (150 MHz. CDCIls), & (ppm): 167.4, 163.5, 158.5, 153.5, 152.8, 149.8, 148.9,
136.1, 132.8, 131.9, 131.7, 131.5, 128.7, 128.4, 126.8, 124.0, 122.8, 114.4, 110.4,
108., 98.20, 97.3, 85.3, 79.5, 65., 55.31, 54.2, 44 .4, 38.1, 36.5, 12.5.

5’-S-(4-Methyl-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5b)

0
\kaH
N Yo

.
s )
& Ge

Et,N

Physical properties: Pink solid

m.p.: 115-116°C,

Yield: 70%

HRMS [TOF MS ES+] m/z calculated for C4s5H49N505S
[M+H]*: 772.3527; found [M+H]*: 772.3535.

TH NMR (400 MHz. DMSO), & (ppm): 8.04 (s, 1H), 7.94 —
7.86 (m, 1H), 7.56 — 7.44 (m, 2H), 7.22 - 7.16 (m, 2H), 7.13
—7.04 (m, 2H), 7.04 —6.92 (m, 2H), 6.55 (t, J= 6.7 Hz, 1H),
6.47 —6.37 (m, 4H), 6.33 — 6.22 (m, 2H), 4.79 (ddd, J = 7.2,
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4.3, 3.0 Hz, 1H), 3.69 — 3.60 (m, 1H), 3.33 (p, J = 7.1 Hz, 8H), 2.86 (dd, J = 13.6, 3.1
Hz, 1H), 2.66 (ddd, J = 13.8, 6.9, 5.3 Hz, 1H), 2.26 (s, 3H), 2.14 (dd, J = 13.6, 4.3 Hz,
1H), 1.72 — 1.54 (m, 3H), 1.16 (td, J = 7.1, 4.7 Hz, 12H).

13C NMR (100 MHz. DMSO), & (ppm): 167.3, 163.4, 153.5, 153.5, 152.6, 149.7, 136.2,
136.1, 132.7, 131.8, 131.2, 129.7, 128.7, 128.4, 127.0, 124.0, 122.8, 110.3, 108.5,
98.3, 97.8, 84.7, 78.8, 65.8, 55.2, 44.5, 36.2, 30.5, 20.9, 12.5, 12.1.

5’-S-(4-Methoxy-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5c)

Physical properties: Pink solid

OMe O m.p.: 103-107°C,
i* Yield: 65%
N HRMS [TOF MS ES+] m/z calculated for CasHagNsOgS
o [M+H]*: 788.3476; found [M+H]*: 788.3482.

N O NEt,
1H NMR (600 MHz.CDCls), 5(ppm): 8.17 (s, 1H), 7.90 (dd,
J=15.8,3.0Hz 1H), 7.47 (dd, J = 5.8, 3.0 Hz, 2H), 7.16 —

EtoN 7.11 (m, 3H), 7.10 = 7.05 (m, 1H), 6.78 — 6.72 (m, 2H), 6.61

(t, J = 6.8 Hz, 1H), 6.44 — 6.40 (m, 2H), 6.39 — 6.35 (M, 1H),
6.29 — 6.23 (m, 2H), 4.71 (ddd, J = 7.5, 4.6, 2.7 Hz, 1H), 3.76 (s, 3H), 3.74 — 3.68 (m
1H), 3.33 (dq, J = 20.5, 7.1 Hz, 8H), 2.79 (dd, J = 13.9, 3.0 Hz, 1H), 2.64 (ddd, J =
14.0, 6.8, 4.6 Hz, 1H), 2.13 (dd, J = 13.9, 4.8 Hz, 1H), 1.72 (s, 3H), 1.71 — 1.65 (m,
1H), 1.16 (dt, J = 16.9, 7.0 Hz, 12H).

13C NMR (150 MHz. CDCIls), 5(ppm): 167.4, 163.5, 158.5, 153.4, 152.8, 149.8, 148.9,
136.1, 132.8, 131.9, 131.7, 131.5, 128.7, 128.4, 126.8, 124.0, 122.8, 114.4, 110.4,
108.4, 98.2, 97.3, 85.3, 79.5, 65.8, 55.3, 54.2, 44 .4, 38.1, 36.6, 12.5.



5’-S-(4-Chloro-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5d)

cl 0
NH
N/g
0
Et,N

Physical properties: Pink solid

m.p.: 125-129°C,

Yield: 76%

HRMS [TOF MS ES+] m/z calculated for C44H46CIN5O5S
[M+H]*: 792.2981; found [M+H]*: 792.2985.

'H NMR (600 MHz. CDCl5), & (ppm) 8.31 (s. 1H). 7.91 (q.
J=42.38Hz 1H). 748 (q. J = 4.0 Hz. 2H). 7.14 d. J =
8.3 Hz. 2H). 7.10 — 7.08 (m. 1H). 7.05 (d. J = 8.3 Hz. 2H).
6.99 (s. 1H). 6.64 — 6.53 (m. 1H). 6.40 (dt. J = 27.1. 7.2 Hz.
3H). 6.31 = 6.22 (m. 2H). 4.76 (dt. J = 7.7. 3.7 Hz. 1H). 3.73

(dt. J = 11.5. 5.7 Hz. 1H). 3.33 (dt. J = 25.1. 7.3 Hz. 8H). 2.86 (dd. J = 13.8. 3.1 Hz.
1H). 2.66 (dt. J = 12.9. 6.2 Hz. 1H). 2.16 (dd. J = 13.9. 4.6 Hz. 1H). 1.85 (dtt. J = 28.1.
22.3.8.7 Hz. 1H). 1.70 (s. 3H). 1.16 (dt. J = 20.1. 7.1 Hz. 12H).

13C NMR (151 MHz. CDCls), & (ppm): 167.4, 163.5, 153.4, 149.8, 149.1, 135.9, 135.3,
132.9, 131.6, 129.6, 129.4, 128.8, 128.8, 128.5, 124.0, 122.9, 110.5, 108.4, 107.3,
98.2,97.8, 85.3, 78.9, 65.8, 54.2, 44 .4, 36.1, 14.6, 12.5, 12.3.

5’-Se-(Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5e)

@

Q O NEt,
o

Et,N

Physical properties: Pink solid

m.p.: 114-115°C,

Yield: 84%

HRMS [TOF MS ES+] m/z calculated for C44H47NsO5Se
[M+H]*: 806.2820; found [M+H]*: 806.2822.

'H NMR (400 MHz. CDCls), 5 (ppm): 8.02 (s, 1H), 7.95 —
7.86 (m, 1H), 7.55 — 7.40 (m, 2H), 7.33 — 7.27 (m, 2H), 7.18
—7.08 (m, 4H), 7.04 (d, J = 1.3 Hz, 1H), 6.54 (t, J = 6.6 Hz,
1H), 6.49 — 6.35 (m, 4H), 6.29 (dt, J = 9.1, 3.2 Hz, 2H), 4.88
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—4.76 (m, 1H), 3.72 — 3.60 (m, 1H), 3.33 (dt, J = 14.0, 6.9 Hz, 7H), 2.92 (dd, J = 13.6,
3.0 Hz, 1H), 2.73 — 2.62 (m, 1H), 2.16 (dd, J = 13.6, 4.2 Hz, 1H), 1.69 — 1.62 (m, 1H),
1.61 (d, J = 1.2 Hz, 3H), 1.16 (td, J = 7.1, 4.0 Hz, 12H).

13C NMR (150 MHz. CDCl5), & (ppm): 167.2, 163.7, 153.4, 153.3, 152.4, 149.8, 135.9,
132.7, 131.6, 130.8, 130.4, 128.7, 128.7, 128.6, 128.3, 126.1, 123.9, 122.7, 110.2,
98.1,97.6, 84.5, 78.5, 60.5, 55.0, 44.4, 35.9, 29.9, 12.4, 12.1.

5’-Se-(4-Methyl-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5f)

Physical properties: Pink solid

0 m.p.: 95-96°C,
NH .
\fj\/g Yield: 96%
e N0 HRMS [TOF MS ES+] m/z calculated for C4sH49Ns05Se
0 r:O: [M+H]*: 820.2977; found [M+H]*: 820.2985.
O™

O o H NMR (600 MHz. CDCl;), 3 (ppm): 8.09 (s, 1H), 7.91 (dd,

J=6.0,2.9 Hz, 1H), 7.48 (dt, J = 8.7, 3.9 Hz, 2H), 7.19 (d,
J = 8.3 Hz, 2H), 7.12 — 7.08 (m, 1H), 7.07 (s, 1H), 6.99 —
6.94 (m, 2H), 6.56 (t, J = 6.6 Hz, 1H), 6.45 — 6.41 (m, 2H),
6.39 (d, J = 4.0 Hz, 1H), 6.27 (d, J = 9.3 Hz, 2H), 4.81 — 4.76 (m, 1H), 3.66 — 3.64 (m,
1H), 3.33 (dd, J = 11.3, 7.2 Hz, 8H), 2.87 (dd, J = 13.6, 2.6 Hz, 1H), 2.65 (dd, J = 13.3,
6.4 Hz, 1H), 2.26 (s, 3H), 2.12 (dd, J = 13.4, 4.1 Hz, 1H), 1.74 (t, J = 7.5 Hz, 1H), 1.62
(s, 3H), 1.16 (q, J = 7.3 Hz, 12H).

Et,N

13C NMR (151 MHz. CDCls), & (ppm): 167.3, 163.4, 153.5, 153.4, 152.6, 149.7, 136.1,
132.7, 131.7, 131.1, 129.7, 128.7, 128.7, 128.4, 126.9, 124.0, 122.8, 110.3, 108.4,
98.2,97.7,84.6, 78.8, 65.8, 55.1, 44.4, 36.2, 30.4, 20.9, 12.5, 12.1.



5’-Se-(4-MethoxyPhenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (59)

OMe (@)
il”i”
N (0]
Se
o 0]
s vas
e

Et,N

Physical properties: Pink solid

m.p.: 121-123°C,

Yield: 82%

HRMS [TOF MS ES+] m/z calculated for C4sH49NsOSe
[M+H]*: 836.2926; found [M+H]*: 836.2931.

'H NMR (400 MHz. DMSO), 5 (ppm): 8.06 (s, 1H), 7.96 —
7.84 (m, 1H), 7.46 (dd, J = 5.6, 3.1 Hz, 2H), 7.16 — 7.11 (m,
3H), 7.10 — 7.05 (m, 1H), 6.77 — 6.71 (m, 2H), 6.59 (t, J =
6.7 Hz, 1H), 6.46 — 6.36 (m, 3H), 6.33 — 6.24 (m, 2H), 4.72

(ddd, J = 6.6, 4.8, 2.9 Hz, 1H), 3.76 (s, 3H), 3.71 (ddd, J = 11.1, 6.6, 4.9 Hz, 1H), 3.32
(dq, J = 11.3, 7.1 Hz, 8H), 2.78 (dd, J = 13.9, 3.0 Hz, 1H), 2.65 (ddd, J = 13.8, 6.8, 4.9
Hz, 1H), 2.16 (dd, J = 13.9, 4.9 Hz, 1H), 1.75 — 1.62 (m, 4H), 1.15 (dt, J = 9.8, 7.1 Hz,

12H).

3C NMR (100 MHz. DMSO), & (ppm): 167.4, 163.4, 158.6, 153.5, 153.5, 152.8, 149.8,
136.1, 132.8, 131.8, 128.8, 128.8, 128.4, 126.9, 124.0, 122.8, 114.5, 110.4, 108.5,
98.4,97.9, 85.4, 79.6, 65.8, 55.3, 54.4, 44.5, 38.2, 36.5, 12.6, 12.3.

5’-Se-(4-Chloro-Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5h)

Q O NEt,
o

Et,N

Physical properties: Pink solid

m.p.: 136-139°C,

Yield: 72%

HRMS [TOF MS ES+] m/z calculated for C44H46CINsO5Se
[M+H]*: 840.2428; found [M+H]*: 840.2436.

'H NMR (600 MHz. CDCl5), 3 (ppm): 8.96 (m, 1H), 7.93 —
7.90 (m, 1H), 7.47 (dd, J = 6.1, 2.8 Hz, 2H), 7.22 — 7.19 (m,
2H), 7.12 — 7.07 (m, 3H), 7.01 (d, J = 1.4 Hz, 1H), 6.55 (t,
J = 6.6 Hz, 1H), 6.45 — 6.38 (m, 4H), 6.27 (td, J = 8.9, 2.6
Hz, 2H), 4.82 (ddd, J = 7.2, 4.3, 3.1 Hz, 1H), 3.68 — 3.64
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(m, 1H), 3.33 (dg, J = 14.0, 7.1 Hz, 8H), 2.88 (dd, J = 13.3, 3.1 Hz, 1H), 2.72 — 2.67
(m, 1H), 2.21 — 2.17 (m, 1H), 1.69 (d, J = 1.3 Hz, 3H), 1.68 — 1.63 (m, 1H), 1.16 (q, J
= 7.3 Hz, 12H).

13C NMR (150 MHz. CDCls), & (ppm):167.4, 163.7, 153.5, 152.6, 149.9, 149.0, 135.9,
132.8, 132.4, 132.3, 131.6, 129.1, 128.9, 128.8, 128.7, 128.4, 124.0, 122.8, 110.5,

108.4, 98.2,97.7, 84.7, 78.5, 65.8, 55.1, 44.5, 35.7, 30.6, 12.5, 12.3.

5-Te-(Phenyl)-3’-N-Rhodamine-3’,5’-dideoxy- aminothymidine (5i)

Physical properties: Pink solid
m.p.: 117-120°C,

@]
\fk)"': Yield: 14%
N (@]
Te
O O

HRMS [TOF MS ES+] m/z calculated for C44H47N5O5Te
r: : [M+H]*: 856.2717; found [M+H]* : 856.2724.
O™
O 0 TH NMR (600 MHz. CDCI3), & (ppm): 8.94 (d, J = 10.3 Hz,

1H), 7.92 (dd, J = 5.7, 3.1 Hz, 1H), 7.47 (dd, J = 5.7, 3.0
Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 7.09 (dd, J = 5.6, 3.0 Hz,
1H), 7.06 — 7.03 (m, 2H), 7.00 (s, 1H), 6.57 (t, J = 6.7 Hz,
1H), 6.43 (t, J = 9.6 Hz, 3H), 6.38 (d, J = 2.5 Hz, 1H), 6.31 — 6.24 (m, 2H), 4.80 — 4.75
(m, 1H), 3.73 (ddd, J = 11.6, 6.7, 5.1 Hz, 1H), 3.32 (dq, J = 22.2, 7.1 Hz, 8H), 2.85 (dd,
J=13.8, 3.0 Hz, 1H), 2.72 — 2.64 (m, 1H), 2.20 (ddd, J = 13.8, 4.8, 2.7 Hz, 1H), 1.71
(s, 3H), 1.69 (d, J = 2.9 Hz, 1H), 1.15 (dt, J = 18.0, 7.0 Hz, 12H).

Et,N

13C NMR (150 MHz. CDCls), & (ppm): 167.3, 163.7, 153.4, 152.5, 149.8, 148.9, 135.8,
135.3, 132.7, 131.5, 131.3, 129.2, 128.6, 128.3, 123.9, 122.7, 110.4, 108.3, 105.1,
104.5, 97.9, 97.6, 85.2, 78.8, 65.7, 54.1, 44.3, 35.9, 12.4, 12.2.



Photophysical analysis

The UV-Vis electronic absorption spectroscopy of compounds 5a-i was recorded using
a Shimadzu UV-2600 spectrophotometer (data interval, 1.0 nm) using three solvents
(DCM, EtOH and DMSO) according to the distinct dielectric constant (&y). All absorption
spectra were recorded in the 250-650 nm range at a fixed concentration of 20 yM.
Steady-state fluorescence emission spectra of 5a-i in the same solvents were
measured with a Horiba Yvon-Jobin Fluoromax Plus spectrofluorometer (Em/Exc; slit
1.0 mm) in the 350-650 nm range at a fixed concentration of 2.0 yM. Fluorescence
quantum yield values (®s) of the studied compounds were determined by comparing
the corrected fluorescence spectra with that of 9,10-diphenylanthracene standard
probe in CHCI; solution (®; = 65%; Aexc = 365 nm) using the appropriate equation
according to the literaturell.

Fluorescence lifetime values (t;) of 5a-i were recorded using the Time-Correlated
Single Photon Counting (TCSPC) method with a DeltaHub controller and Horiba
spectrofluorometer. The data were processed using the DAS6 and OriginPro® 8.5
software, utilizing mono-exponential fitting of the raw data. A NanoLED (Horiba) source
(1.0 MHz; pulse width <1.2 ns; 284 nm excitation wavelength) was used as the

excitation source.

10



7 DCM _ 5s

0 I T T T = T T T T T T T T T 1
250 300 350 400 450 500 550 600 650
Wavelength (nm)

Figure S1. Absorption UV-Vis spectra of studied derivatives in DCM, using fixed

concentration at 20 uM.
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Figure S2. Absorption UV-Vis spectra of studied derivatives in EtOH, using fixed

concentration at 20 uM.
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Figure S3. Absorption UV-Vis spectra of studied derivatives in DMSO, using fixed

concentration at 20 uM.
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Figure S4. Normalized steady-state fluorescence emission spectra of studied
derivatives in DCM, using fixed concentration at 2.0 yM, excited in the less energy

transition band.
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Figure S5. Normalized steady-state fluorescence emission spectra of studied
derivatives in EtOH, using fixed concentration at 2.0 uM, excited in the less energy

transition band.
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Figure S6. Normalized steady-state fluorescence emission spectra of studied
derivatives in DMSO, using fixed concentration at 2.0 uM, excited in the less energy

transition band.
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Figure S7. Normalized fluorescence decay plots of studied derivatives in DCM, using

fixed concentration at 2.0 uM, excited by NanoLED source at 284 nm.

—
N
]

Normalized fluorescence decay

Time (ns)

Figure S8. Normalized fluorescence decay plots of studied derivatives in EtOH, using

fixed concentration at 2.0 uM, excited by NanoLED source at 284 nm.
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Figure S9. Normalized fluorescence decay plots of studied derivatives in DMSO, using

fixed concentration at 2.0 uM, excited by NanoLED source at 284 nm.
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Table S1. Photophysical parameters of derivatives in several solvents.

Compound Solvent* A, nm (g5 M'em™)? Aems NM (D, %)P¢  Adgs (nm/cm)¢ T4, 118 (3)° k. (x107 sY)f 7, (ns)f ke (x107 s)f T, (0S)f
DCM 274 (45680); 317 (14420) 456 (12.0) 139/9615 11.7 (0.92110) 1.02 97.5 7.52 133
Sa EtOH 272 (48250); 316 (14020) 525 (1.5) 209/12595 4.20 (0.84629) 0.36 280.0 23.4 4.25
DMSO 258 (54525); 317 (17970) 510 (14.0) 193/11940 22.2 (0.95500) 0.63 158.5 3.87 25.8
DCM 275 (50460); 319 (15365) 455 (12.0) 136/9370 10.9 (0.99151) 1.10 90.8 8.07 12.4
5b EtOH 273 (48460); 317 (13310) 514 (1.5) 197/12090 3.85(0.85830) 0.39 256.0 25.6 3.90
DMSO 276 (55665); 319 (39510) 508 (13.0) 189/11660 23.2 (0.95340) 0.56 178.0 3.75 26.5
DCM 275 (38790); 318 (12190) 455 (11.0) 137/9470 11.6 (0.94616) 0.95 105.4 7.67 13.0
Sc EtOH 273 (41785); 316 (9870) 439 (1.0) 123/8865 2.45(0.90790) 0.41 245.0 40.4 2.45
DMSO 274 (38450); 326 (22715) 509 (14.0) 183/11030 23.1(0.94830) 0.60 165.0 3.70 27.0
DCM 273 (50565); 318 (13785) 455 (11.0) 137/9470 10.6 (0.92374) 1.04 96.4 8.40 11.9
5d EtOH 272 (48145); 318 (11790) 513 (1.5) 195/11955 4.00 (0.97165) 0.37 266.0 24.6 4.05
DMSO 259 (61570); 314 (15910) 510 (14.0) 196/12240 22.6 (0.93550) 0.62 161.0 3.80 26.0
DCM 274 (60945); 319 (17490) 455 (12.0) 136/9370 10.5 (0.97729) 1.14 87.5 8.40 11.9
Se EtOH 273 (45520); 319 (10370) 492 (1.5) 173/11020 4.30 (0.97130) 0.35 286.0 22.9 4.35
DMSO 265 (48880); 319 (16810) 507 (14.0) 188/11625 23.7(0.94151) 0.59 169.0 3.60 27.5
DCM 274 (49075); 319 (13875) 453 (11.0) 134/9270 9.75 (0.99110) 1.13 88.6 9.13 10.9
5f EtOH 274 (56240); 319 (18650) 446 (1.0) 127/8925 2.45 (0.87850) 0.41 245.0 40.4 2.45
DMSO 274 (52220); 317 (20280) 509 (13.0) 192/11900 23.2 (0.95340) 0.56 178.0 3.75 26.5
DCM 274 (46320); 318 (11865) 456 (11.0) 138/9515 10.0 (0.98480) 1.10 91.0 8.90 11.2
5g EtOH 273 (38550); 322 (8350) 461 (2.0) 139/9365 3.30 (0.83150) 0.60 165.0 29.7 335
DMSO 274 (69780); 321 (22080) 507 (14.0) 186/11430 n.d. n.d. n.d. n.d. n.d.
DCM 274 (60635); 318 (18650) 453 (11.0) 135/9370 10.3 (0.94025) 1.07 93.6 8.64 11.6
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5h EtOH 272 (39050); 321 (9265) 511(1.5) 190/11585 nd. n.d. nd. nd. n.d.
DMSO 273 (77355); 321 (28490) 510 (14.0) 189/11540 21.1 (0.83330) 0.66 151.0 4.10 24.5

DCM 273 (52470); 318 (14730) 461 (12.0) 143/9755 7.70 (0.91146) 1.56 642 11.4 8.75

5i EtOH 273 (48355); 321 (9370) 500 (1.5) 179/11150 nd. nd. n.d. n.d. nd.
DMSO 259 (69780); 318 (20675) 507 (14.0) 189/11720 13.3 (0.92940) 1.05 95.0 6.45 15.5

DCM 278 (39425); 317 (16635); 557 (23210) 564 (51.0) 7/220 4.35 (0.98530) 118 8.53 11.2 8.90

RhB EtOH 274 (10440); 543 (24295) 569 (46.0) 26/840 3.30 (0.98645) 13.9 7.17 16.4 6.10
DMSO 276 (46710); 319 (23485); 415 (12840) 573 (50.0) 158/6645 3.00 (0.98120) 16.6 6.00 16.5 6.00

*Dieletric constant of solventes: DCM (g = 9.10), EtOH (¢ = 24.3), and DMSO (g = 45.0);

*Concentration at 20 pM; *Concentration at 2.0 pM;

cUsing 9,10-diphenylanthracene (DPA) as standard molecule in CHCl; solution (@ = 65%) with errors at +5%;

dStokes Shifts (Alss) = Aem — Aaps (in nm) and (1/A,s) — (1/Ae) (in cm™);

¢Using NanoLED at 284 nm as excitation source, with errors at +10%;

fUsing equations &, = ®¢1; and k,, = (1 — ®y)/t; and 1, = 1/k; and 1, = 1/k,;, with errors at £10%.
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Theoretical Methodology

The structural and spectroscopic properties of compounds 5a-i, and standard
rhodamine (RhB) molecule have been studied using the density functional theory
(DFT), and its time-dependent version. The polarizable continuum model was used to
implicitly simulate the DCM solvent. The exchange and correlation interactions were
described by the hybrid PBEO functionall?. The molecular orbitals were constructed by
linear combinations of the all electron 6-311G (d,p) basis set3l. For the Te atom in the
5i compound the effective core potential split valence CEP-31G basis set have been
usedil.

The geometrical structures of compounds 5a-i and RhB were optimized without
symmetry constraints, and the absorption spectra determined at their ground state
conformations. All calculations were performed using the Gaussian 09 codel®.
TDDFT Absorption spectra
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Figure S$10. Absorption spectra for compunds 5a, 5e, and 5i in DCM. The inset
shows the lowest energy electronic transitions. The vertical lines indicate the precise
wavelengths and oscillator strengths of the individual electronic transitions for each
compound.
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TABLE S2: Coordinates of the optimized structures of compounds 5a, 5e, and

5i

9]
]

OCOQOQZOZIZIITDZIDIIDIIDITD I ITITOOOOOQZOOO0OO0O000O00000O00O0ZOQ0O

-2.336871
-0.908157
0.132737
0.476740
-0.194115
0.581631
0.052709
0.530002
1.535208
2.070302
1.610640
3.077858
3.637472
3.125431
3.783272
4.890063
5.410152
4.753844
6.493336
7.083875
7.225657
7.935567
8.166985
0.145783
-1.281971
0.046371
-3.048110
-2.464493
-2.590427
8.289321
8.809001
7.361873
8.635348
7.627637
8.959816
7.800053
6.512556
6.288146
7.699017
1.885410
0.731081
1.990000
0.996659
2.894712

5.488499
5.972383
5.164082
5.456844
4.539362
4.007951
3.551826
2.397768
1.617277
2.082899
3.240176
1.435214
0.321903
-0.275254
-1.423837
-1.944268
-1.330734
-0.174470
-1.856940
-1.146550
-2.992122
0.066413
-2.647787
4.791096
4.647470
3.488583
6.101279
4.444466
5.567122
0.577157
-0.237978
0.782400
-3.557981
-2.163952
-1.970186
-3.431055
-3.763346
-0.845727
-1.864117
0.249149
-0.677444
0.224659
-0.578407
0.878790

-0.734613
-0.477892
-1.098600
-2.484509
-3.509697
-0.500603
0.734108
1.320091
0.741096
-0.455420
-1.074823
-1.115655
-0.548559
0.598802
1.049643
0.412103
-0.757265
-1.213492
-1.426771
-2.552988
-0.880396
-2.169488
0.276095
-4.519585
-3.476037
-3.321402
-0.170671
-0.431412
-1.796270
-3.071106
-1.585545
-1.573343
0.664872
1.096320
-0.053525
-1.700915
-0.570934
-3.243550
-3.102834
1.282910
1.067015
2.793995
3.329869
3.617385
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2.771064
1.765812
0.860283
0.164289
-0.840221
0.256834
-0.271319
-1.184851
-0.886784
-2.513547
-1.348116
-1.993086
-3.206704
-4.686578
-5.871461
-7.079373
-7.125083
-5.947044
-4.726990
-3.689086
-4.899069
-4.972314
-3.741363
-2.501349
-5.991560
-1.478391
-0.714423
-0.793387
1.565983
0.186521
-0.748408
0.088368
2.084503
3.465797
1.693551
3.673797
0.071604
3.409012
5.352766
5.083937
1.109738
-0.838842
0.531530
-0.760828
-1.565768
-2.485781
-3.823452
-5.966348
-8.070497
-7.990309

0.699162
-0.113246
-0.763061
-1.127296
-1.821423
-0.902795
-2.310453
-2.075513
0.008755
-2.727344
-0.689067
0.225334
1.421005
1.012683
1.600902
1.326319
0.457427
-0.119314
0.159248
-2.013023
-2.575007
-4.019882
-4.669587
-4.103971
-4.664055
-4.766064
6.032053
6.992777
5.424882
6.493348
4.086048
2.071196
3.519675
1.199113
-0.233974
1.511110
-1.394694
-1.923601
-2.829695
0.368776
-0.713759
-2.695666
-3.010128
-2.468226
0.609370
-0.724631
-0.288063
-0.791674
0.236757
1.785811

4.994000
5.532563
4.699768
2.229630
2.344692
-0.277530
-0.577933
-1.790476
-0.780099
-1.620377
-1.940347
0.247157
-0.390544
0.508257
0.048420
0.676909
1.766248
2.228080
1.612787
-1.584639
-1.379784
-1.216432
-1.331041
-1.536211
-1.011968
-1.630588
0.597364
-0.856517
-2.605676
-2.675551
1.227813
2.258384
-2.006823
5.661932
6.608745
3.202547
5.096087
1.939246
0.827851
-2.089084
-0.936870
0.268299
-0.807135
-2.716551
1.174173
0.466056
2.012407
3.080565
2.251488
0.305392
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(9]
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-3.750171
-0.504044
-5.848012
-6.170153
-6.616628
-6.906968
-5.984625
-3.569131

3.169626
1.777849
0.772356
0.718747
1.341037
0.047868
0.342158
-0.403670
-1.454210
-1.766519
-1.041235
-2.789891
-3.603609
-3.317285
-4.221118
-5.347667
-5.633681
-4.731970
-6.730441
-7.073235
-7.698487
-7.720194
-8.681040
1.256281
2.398268
0.838465
3.832919
3.119104
3.611393
-7.881076
-8.688641
-7.086551
-9.342663
-8.155638
-9.301834
-8.253158
-7.164542

-5.678849
0.970319
2.265023

-1.783988

-1.847907

-2.165732

-0.729080

-0.946625

-4.730620
-5.361528
-4.568065
-4.663329
-3.472919
-3.605386
-3.242679
-2.280576
-1.595640
-1.987890
-2.960223
-1.422542
-0.511671
0.028075
0.975496
1.358086
0.805870
-0.152444
1.204984
0.530674
2.141383
-0.845029
1.528821
-3.615691
-3.365807
-2.536506
-5.332181
-3.715548
-4.670186
-1.314925
-0.758891
-1.507034
2.304001
1.060528
0.766185
2.567963
2.979925

-1.247785
-1.133396
-0.811524
-1.311676
-0.313297
-2.025950
-1.525703
-1.734832

-0.534106
-0.591620
-1.285201
-2.738083
-3.470199
-0.622496
0.715571
1.363663
0.742284
-0.554375
-1.235096
-1.263864
-0.646164
0.604913
1.096156
0.396326
-0.879012
-1.373865
-1.610495
-2.855366
-1.055335
-2.677235
-0.054615
-4.552464
-3.211529
-3.209148
0.096120
-0.133644
-1.534547
-3.653071
-2.176065
-2.079210
0.345940
0.783482
-0.533686
-1.895770
-0.595724
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-6.174770
-7.754740
-2.055951
-1.043701
-2.232335
-1.322132
-3.098418
-3.026543
-2.103420
-1.233204
-0.519090
0.425133
-0.630744
-0.088482
0.734564
0.474224
2.071334
0.890342
1.623362
2.813459
4.316490
5.533160
6.672836
6.612695
5.401520
4.252257
3.236515
4.456655
4.557780
3.330834
2.076479
5.590106
1.056410
1.415179
1.832832
-0.319183
1.247948
1.176475
-0.128697
-1.349373
-3.695492
-2.067868
-3.809368
-0.507791
-4.029856
-6.008388
-4.872963
-1.517712
0.546040
-0.886014

0.448598
1.186728
-0.339213
0.769248
-0.470803
0.337698
-1.290101
-1.264942
-0.448391
0.364774
1.089253
1.833929
1.278253
2.715417
2.732451
0.491533
3.359779
1.404185
0.039305
-1.038219
-1.150172
-1.534767
-1.647251
-1.367178
-0.984585
-0.881808
2.630702
3.159700
4.591727
5.260736
4.723108
5.211539
5.396338
-5.573276
-6.331288
-4.805815
-5.578499
-3.689399
-2.011655
-3.193792
-1.892355
-0.453068
-1.930186
1.002835
1.425780
2.088143
-0.639400
1.238309
2.910556
3.457661

-3.477108
-3.403694
1.344399
1.277795
2.841974
3.501847
3.551207
4.943034
5.607285
4.887572
2.503176
2.739256
-0.010455
-0.044656
-1.342810
-0.745846
-1.160047
-1.765098
0.143426
-0.954518
0.206256
-0.365822
0.422557
1.786503
2.355147
1.573642
-1.170780
-0.945378
-0.711480
-0.753545
-0.952301
-0.497856
-0.942825
0.418712
-1.097499
-3.064078
-3.016906
1.240564
2.380609
-2.246394
5.524066
6.692124
3.037697
5.382213
2.066639
0.845335
-2.329634
-0.651608
0.818563
-0.064839
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n
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0.242596
1.239913
2.166547
3.318601
5.342399
7.504670
7.612043
3.353546
0.073704
5.591113
5.700120
6.211834
6.408042
5.451603
3.117498

2.859176

1.894834

0.488609
-0.244034
-0.063580
-0.031659

0.602989

0.026323
-1.167395
-1.775706
-1.234195
-2.943653
-3.562693
-3.038155
-3.778690
-4.973072
-5.507155
-4.766643
-6.684242
-7.257472
-7.515626
-7.956111
-8.294982
-0.749055

0.956149
-0.267572

3.892824

2.753780

2.675115
-8.307906

3.291241
-0.589061
0.884796
-0.588446
-0.767340
-1.445744
-1.944009
6.260416
-0.375672
-1.735912
2.321286
2.409034
2.637623
1.268087
1.571541

-3.967074
-5.036781
-4.663305
-5.099998
-4.229213
-3.686161
-3.330576
-2.404220
-1.737836
-2.082881
-3.030786
-1.522734
-0.585742
-0.141728

0.831963

1.328015

0.866899
-0.109425

1.372011

0.820301

2.265286
-0.530875

1.579513
-4.557729
-4.303878
-3.175805
-4.313734
-3.037357
-3.745613
-0.901527

-2.140780
0.944591
0.571442
2.041842
3.417439
2.400044

-0.034370

-0.593049

-1.273767

-1.432449

-0.924100
0.040220

-1.697475

-1.083326

-1.363118

-2.754249
-2.240434
-2.331330
-3.510702
-4.758034
-1.507438
-0.288315
0.555365

0.250346
-0.950707
-1.814583
-1.385103
-0.607131

0.601189

1.280637
0.800094
-0.431649
-1.118327
-0.941728
-2.161920
-0.144817
-1.987391
0.980186
-5.546470
-5.147378
-4.541850
-2.652541
-2.185347
-3.809190
-2.956090
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-8.820613
-7.277911
-8.846261
-7.624530
-9.015339
-8.215716
-6.892668
-6.472002
-7.972887
-1.717801
-0.747208
-1.827921
-1.051206
-2.567511
-2.499737
-1.713168
-0.975685
-0.360077
0.412069
-0.311379
-0.177105
0.644316
1.072124
1.487583
1.472996
2.093561
4.056063
3.959610
4.483351
4.384601
3.755289
3.254974
3.371592
2.586989
3.414446
3.131868
2.007475
1.149485
3.788402
0.182512
2.144708
2.019472
-1.305143
0.076517
1.536259
0.521294
-1.772634
-3.064958
-1.679341
-3.177476

-0.440733
-1.276854
2.323945
1.041579
0.861458
2.750690
3.069112
0.744235
1.553835
-0.648020
0.478538
-1.080513
-0.262365
-2.118938
-2.310361
-1.481763
-0.441421
0.740683
1.614886
1.162082
2.681737
2.964635
0.732612
4.155594
1.835427
0.447643
-0.152154
-2.091257
-3.194329
-4.470519
-4.655760
-3.553030
-2.273550
4.151875
5.201749
6.419168
6.335877
5.269069
7.448577
5.321524
-5.296739
-5.956369
-5.169212
-6.123265
-3.791274
-2.187503
-3.215619
-3.117906
-1.656445
-2.762886

-1.323233
-1.561756
1.564385
1.657568
0.577014
-0.830428
0.262712
-2.922072
-2.544601
1.144389
1.261890
2.593874
3.397625
3.141258
4.520359
5.330852
4.773465
2.549332
2.928155
0.066972
0.147972
-1.106684
-0.498636
-1.010864
-1.316530
0.584173
-0.149353
0.783370
0.107226
0.659902
1.888707
2.578002
2.037665
-0.178532
-0.015644
-0.768342
-1.590758
-1.761805
-0.723603
-2.503940
-1.205705
-2.819575
-3.250579
-3.732614
0.012482
1.498698
-2.734878
4.975693
6.401616
2.514863

27



eofiasfacfaniiesfanii@Qasfiasfianfasfasiiasiiasfianfasasiiasfanfiasfasfian

-0.357983
-3.398556
-5.492491
-5.097396
-1.057355
0.362193
-1.141396
0.008907
3.000016
2.780350
3.662993
4.789021
1.778080
0.968257
4.955013
4.609497
4.524438
5.526589
4.713966
2.754340
1.761151
2.208749

0.210343
1.212901
2.074546
-0.529549
0.929882
2.975234
3.193027
3.126882
-1.426448
-3.683666
-5.651047
-5.321390
7.163325
-0.141630
-3.069039
5.183812
5.955965
5.389180
4.212516
3.214387
-0.409305
1.287553

Electrochemical study

Electrochemical

analysis

5.383192
2.225310
1.386794
-2.059033
-0.700698
1.050680
0.129321
-1.978758
2.607539
3.545957
2.312217
0.119311
-2.127776
-1.148255
-0.862344
0.888665
1.660546
0.326752
1.379708
0.336843
1.169194
1.269120

by cyclic

voltammetry was recorded with

a

potentiostat/galvanostat AutoLab Eco Chemie PGSTAT 128 N system at room

temperature and under an argon atmosphere in a dry DCM solution. Electrochemical

grade tetrabutylammonium hexafluorophosphate (0.1 M TBAPFg¢) was used as a

supporting electrolyte. The electrochemical cell is composed of three components:

glassy carbon electrode (working electrode; 5.0 mm, Metrohm®), a Pt auxiliary

electrode and a Pt pseudo-reference electrode. To monitor the reference electrode,

the Fc/Fc* redox couple pair (E4» = 0.42 V) was used as an internal referencel®, and

used SHE (Standard Hydrogen Electrode).
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Figure S11. CV plots of derivatives in DCM solution.

ROS Generation

Singlet oxygen production ('O,) was recorded according to typical 9,10-
diphenylanthracene (DPA) photoxidation assays, with compounds 5a-i, according to
the literaturel’l. In order to measure singlet oxygen generation, absorption UV-Vis
spectra of each solution were recorded at diferente exposure times (0 to 20 min), using
red-light diode laser (Thera Laser DMC — S&o Paulo; potency of 100 mW). The
photoxidation constant (k,,) and singlet oxygen production quantum yield (®,) was
calculated by In Ay/A versus time plots.

For superoxide generation assays, the nitroblue tetrazolium (NBT) experiment was
used to detect the formation of superoxide radical species (O,™) in the presence of
compounds 5a-i. This approach was carried out using at the same conditions in the
literature, using NBT and NADH in DMF solutionl®. Control experiments were
performed in the absence of compounds. Samples were irradiated under aerobic
conditions using red-light diode laser (Thera Laser DMC — S&o Paulo; potency of 100

mW). The progress of the reaction was monitored by following the increase of the
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absorbance close to 530 nm. The superoxide generation constant (ksp) can be

obtained from the slope.
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Figure S12. DPA photooxidation assays of compound 5a in DMSO.
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Figure S13. DPA photooxidation assays of compound 5b in DMSO.
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Figure S14. DPA photooxidation assays of compound 5c¢ in DMSO.
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Figure S15. DPA photooxidation assays of compound 5d in DMSO.
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Figure S16. DPA photooxidation assays of compound 5e in DMSO.
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Figure S17. DPA photooxidation assays of compound 5f in DMSO.
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Figure S18. DPA photooxidation assays of compound 5g in DMSO.
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Figure S$S19. DPA photooxidation assays of compound 5h in DMSO.
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Figure S$20. DPA photooxidation assays of compound 5i in DMSO.
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Figure S21. DPA photooxidation assays of compound RhB in DMSO.
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Fiic_;ure S$32. HRMS of 5a (calculated for M+H*: 758.3371).
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Figure S33. HRMS of 5b (calculated for M+H*: 772.3527).
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Figure S34. HRMS of 5c¢ (calculated for M+H*: 788.3476).
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Figure S35. HRMS of 5d (calculated for M+H*: 792.2981).
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Figure S37. HRMS of 5f (calculated for M+H*: 820.2977).
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Figure S38. HRMS of 5g (calculated for M+H*: 836.2926).
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Figure S40. HRMS of 5i (calculated for M+H*: 856.2717).
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