Supporting Information

Core-shell Si doped NiFe LDH/C electrocatalyst for methanol oxidation reaction

Yuanhao Li[#], Siwei Wang[#], Haonan Li, Qijing Bu*, Huijuan Li*, and Qingyun Liu*

College of Chemical and Environmental Engineering, Shandong University of Science

and Technology, Qingdao 266590, China

#These authors contributed equally to this work

Electrochemical test methods

1 Preparation of working electrode

Prior to use, the glassy carbon electrode surface was sequentially polished with alumina polishing powders, ultrasonically treated in a mixed solution of deionized water and ethanol for 10 minutes. The working electrode was prepared as follows: 4 mg of catalyst, 480 μL of deionized water and 500 μL of anhydrous ethanol, and 20 μL of Nafion solution (5 wt%) were mixed. The mixture was then subjected to ultrasonic dispersion for 30 minutes to ensure homogeneity. Subsequently, 3 μL of the uniformly dispersed catalyst ink was precisely deposited onto the pre-polished glassy carbon electrode (GCE). Finally, the coated electrode was air-dried at room temperature to form the working electrode, which was directly employed for the subsequent electrochemical testing.

2 Electrochemical testing

All electrochemical tests were conducted using a CHI760E electrochemical workstation with a three-electrode system. The L-shaped glassy carbon electrode (GCE), Hg/HgO and a platinum sheet ($10 \times 10 \times 0.1$ mm) were acted as the working electrode, the reference electrode and the counter electrode. The N_2 saturated 1 M KOH + 1 M CH₃OH was used as electrolyte. All cyclic voltammetry (CV) and linear sweep voltammetry (LSV)measurements were carried out at the potential in the range from 0 V vs. SCE to 0.6 V vs. SCE with the scan rate of 50 mV s⁻¹. The tafel plots were derived from LSV data using the classical Tafel equation: $\eta = b \log |j| + a$, in which η represents the overpotential, j denotes the current density, b is the Tafel slope, and a is the

intercept. The electrochemical impedance spectroscopy (EIS) was performed at a constant potential of 0.55 V vs. SCE with the frequency range from 1 Hz to 100 kHz. The stability was characterized by the chronoamperometry test which is carried out at 0.55 V vs. SCE for 10 h. The electrochemical surface area (ECSA) is determined by CV curves at different scan rates of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mV s⁻¹. The potential range is typically a 0.1 V window centered at open-circuit potential (OCP) of the system. The double-layer charging current (ic) is equal to the product of the scan rate (v) and the electrochemical double-layer capacitance according to the following equation: ic = v × C_{dl} . Therefore, the slope of the straight line derived from the ic as a function of v, is equal to C_{dl} . The ECSA values are calculated according to the corresponding Cdl depending on the formula: ECSA = C_{dl}/C_s .

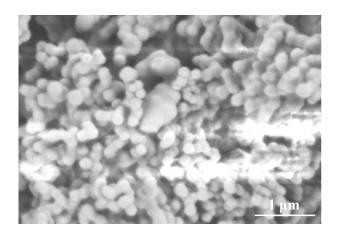


Fig. S1 SEM image of carbon square.

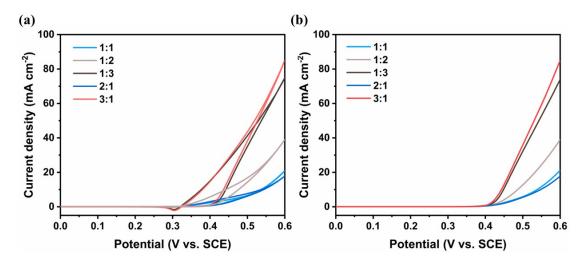


Fig. S2 a) CV curves for NiFe-LDH/C. b) LSV curves for NiFe-LDH/C.

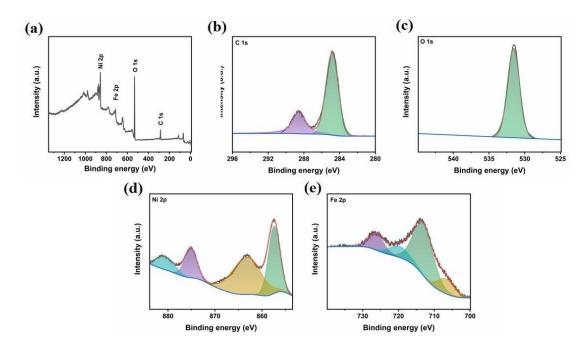
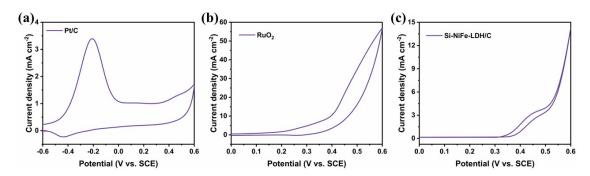



Fig. S3 XPS spectra of NiFe-LDH/C: a) full spectrum, b) C 1s, c) O 1s, d) Ni 2p, e) Fe 2p high-

resolution spectra.

Fig. S4 CV curves for commercial a) Pt/C and b) RuO₂ catalysts, c) CV curves of Si-NiFe-LDH/C synthesized by conventional methods.

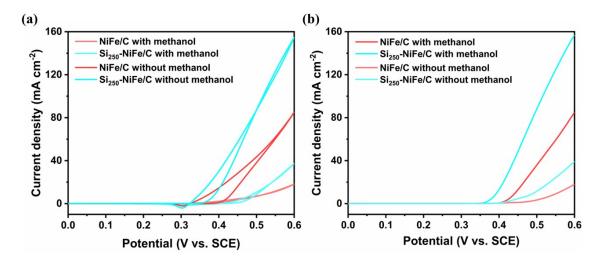


Fig. S5 a) The CV curves and b) the LSV curves of NiFe-LDH/C and Si_{250} -NiFe-LDH/C in 1 M KOH and 1 M KOH + 1M CH₃OH.

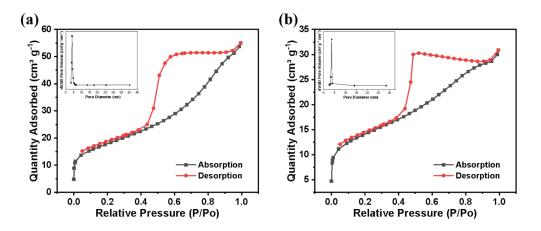


Fig. S6 The N_2 adsorption—desorption isotherm curves and pore size distribution curves of a) NiFe-LDH/C and b) Si_{250} -NiFe-LDH/C.

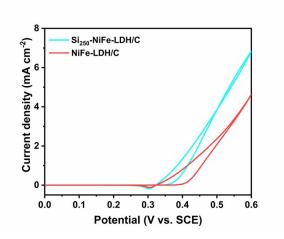
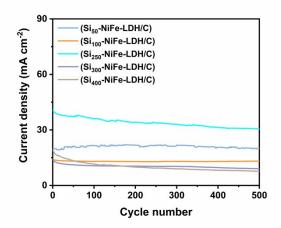



Fig. S7 The intrinsic MOR performance of Si₂₅₀-NiFe-LDH/C and NiFe-LDH/C.

 $\label{eq:Fig.S8} \textbf{Fig. S8} \ \ \text{The cycling performance of the Si}_{x}\text{-NiFe-LDH/C (Si}_{50}\text{-NiFe-LDH/C, Si}_{100}\text{-NiFe-LDH/C, Si}_{100}\text{-NiFe-LDH/C, Si}_{100}\text{-NiFe-LDH/C, Si}_{100}\text{-NiFe-LDH/C, and Si}_{400}\text{-NiFe-LDH/C) in 1 M KOH + 1 M CH}_{3}\text{OH for 500 cycles.}$

 $\textbf{Table S1} \ \, \textbf{Atomic ratios of Si}_{250}\text{-NiFe-LDH/C characterized by SEM-EDS}.$

Element	Weight %	Atom %
С	6.10	12.73
0	40.65	63.64
Si	1.37	1.22
Fe	12.44	5.58
Ni	39.44	16.83
Total	100	100

 Table S2 Comparison of MOR performance of different catalysts.

Catalyst	D. C	Potential	Electrolyte	Scan rate	Referenc
	Performance			(mV s ⁻¹)	e
Si ₂₅₀ -NiFe-LDH/C	154.77 mA	0.6 V vs.	1 M KOH+1 M	50	This
	cm ⁻²	SCE	СН₃ОН		work
Si-NiFe-LDH/C	14.22 mA	0.6 V vs.	1 M KOH+1 M	50	This
	cm ⁻²	SCE	СН₃ОН		work
Mn-NiFe-LDH/NF	148.9 mA	1.6 V vs.	1 M KOH+0.5	10	[1]
	cm ⁻²	RHE	M CH ₃ OH		
Pt/NiFe-LDH	18 mA cm ⁻²	0.4 E vs.	0.5 M KOH+1	50	[2]
		RHE	M CH ₃ OH		[~]
NiFe-	15.1 mA cm ⁻²	1.6 V vs.	1 M KOH+0.5	100	[3]

LDH/300MoCN		RHE	M CH₃OH		
Ni-MOF/NiFe-	32.66 mA	0.9 V vs.	1 M KOH+1 M	50	[4]
LDH	cm ⁻²	Hg/HgO	СН ₃ ОН		
NiFe-LDH/CX/NF	400 mA cm ⁻²	0.7 V vs.	1 M KOH+0.5	10	[5]
		Ag/AgCl	M CH₃OH		[5]
Cu(OH) ₂ @FeNi(O	60 mA cm ⁻²	1.34 V vs.	1 M KOH+3 M	unidentifie	[6]
H) _x		RHE	СН ₃ ОН	d	[6]
Pt/Ni-Fe	949.3 mA	unidentifie	1 M KOH+1 M	100	[7]
LDH/RGO	mg^{-1}	d	СН ₃ ОН	100	[7]

Reference

- [1].Y. Ma, L. Li, Y. Zhang, et al. J. Colloid Interface Sci. 2024, 663, 971-980.
- [2].L. Li, Y. Yang, Y. Wang, et al. J. Mater. Res. Technol. 2020, 9 (3), 5463-5473.
- [3].Y. Du, Y. Zhang, X. Pu, et al. Chemosphere. 2023, 312, 137203.
- [4].W. Xia, G.Z. Guo, X.Q. Wu, et al. Solid State Chem. 2024, 336, 124783.
- [5].G.M. Abdelrazek, M.M. El-Deeb, A.A. Farghali, et al. Materials. 2021, 14 (18), 5271.
- [6].Y. Liang, Z. Song, Y. Zhang, et al. ACS Appl. Nano Mater. 2021, 4 (9), 8723-8732.
- [7]..Z. Wang, F. Zhang, H. Zou, et al. J. Electroanal. Chem. 2018, 818, 198-203.