Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

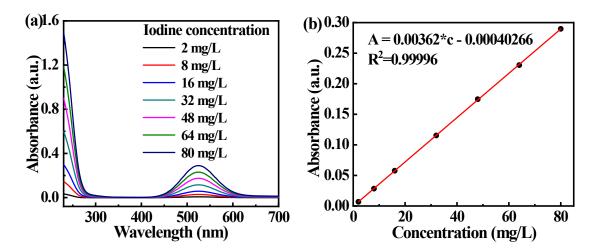
Fine-tuning of ZIF-67 Pore Sizes via Ligand Exchange: Optimal Active Site Interactions for Iodine Capture

Le Chen,^a Jianjun Yin,^a Lin Nie,^a Junyan Qian,^a An Xie,^a Pengxiang Qiu,^{b,*} Junfeng Qian,^{a,*} Qun Chen^a and Zhihui Zhang^{a,*}

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China. E-mail: zhangzh@cczu.edu.cn (Z. Z.) and qianjunfeng@cczu.edu.cn (J. Q.)

^b Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China. E-mail: pxqiu@nuist.edu.cn (P. Q.)

*Corresponding authors' e-mails: pxqiu@nuist.edu.cn (P. Q.); zhangzh@cczu.edu.cn (Z. Z.); qianjunfeng@cczu.edu.cn (J. Q.)


1. Experimental sections

1.1 Characterization

Powder X-ray diffraction (PXRD) patterns were collected at room temperature in a Rigaku D/MAX-2500PC diffractometer (Rigaku Co., Japan) using Cu Kα₁ radiation (λ = 0.15406 nm) operated at 40 kV and 100 mA. Field emission scanning electron microscopy (FE-SEM) images were taken at 5 kV with a SUPRA-55 microscope. Transmission electron microscopy (TEM) images were taken with a JEOL 2100 microscope. Thermogravimetric analysis (TGA) (SDTQ600) of the activated powder was performed from room temperature to 800 °C with a scan rate of 10 °C/min under a Nitrogen atmosphere. N₂ adsorption and desorption isotherms were measured at 77 K using a Micromeritics ASAP 2460 sorption analyzer. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas using adsorption data in a relative pressure range from 0.05 to 0.30. The pore size distributions and pore volume were derived from the desorption branches of the isotherms. X-ray photoelectron spectroscopy (XPS) analysis was conducted on a PHI 5000 VersaProbe II spectrometer equipped with an Al Kα X-ray source operating at 12 kV and 6 mA. UV-Vis absorption spectra were collected using a UV-Vis spectrophotometer (SPECORD® 210 PLUS) in the wavelength range from 200 to 700 nm.

Table S1 Pore structure parameters of ZIF-67 and ZIF-67-IM materials

Sample	BET surface area (m ² /g)	Total pore volume	Average pore diameter (nm)	
		(cm^3/g)		
ZIF-67	1327	0.74	2.24	
ZIF-67-IM	1590	0.93	2.33	

Fig. S1 (a) Absorption curves of standard iodine/cyclohexane solutions; (b) Absorbance/concentration standard curve.

Fig. S2 The color change of solution during the adsorption of iodine by ZIF-67 and ZIF-67-IM (after 48 h of adsorption).

2. I₂ adsorption studies

2.1 Adsorption kinetics

The quantitative basis of Spectrophotometry-Lambert-Beer law:

$$A = \lg \frac{I_0}{I} = abc \tag{S1}$$

The calculation formulas for the removal rate of iodine molecules and the adsorption capacity of the adsorbent during the adsorption process are as follows:

Removal efficiency(%) =
$$\frac{C_0 - C_t}{C_0} \times 100\%$$
 (S2)

$$q_t = \frac{V(C_0 - C_t)}{m} \tag{S3}$$

The pseudo-first-order model is:

$$\frac{dq_t}{dt} = k_1 \left(q_e - q_t \right) \tag{S4}$$

The linear expression of the pseudo-first-order kinetic equation obtained by integration is as follows:

$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t \tag{S5}$$

The pseudo-second-order model is:

$$\frac{dq_t}{dt} = k_2 \left(q_e - q_t \right)^2 \tag{S6}$$

The linear expression of the pseudo-second-order dynamic equation obtained by integration is as follows:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \tag{S7}$$

2.2 Adsorption equilibrium

The Langmuir model assumes that a uniform surface is formed by monolayer adsorption, and the equation is as follows:

$$q_e = \frac{q_{\text{max}} k_L C_e}{1 + k_L C_e} \tag{S8}$$

The linear Langmuir model is expressed as the following equation:

$$\frac{C_e}{q_e} = \frac{1}{k_L q_{\text{max}}} + \frac{C_e}{q_{\text{max}}} \tag{S9}$$

The Freundlich equation is based on the assumption of non-uniform adsorption on the adsorbent surface, and the expression is as follows:

$$q_e = k_F C_e^{1/n_F} \tag{S10}$$

The Freundlich model is expressed as the following equation:

$$\ln q_e = \ln k_F + \frac{1}{n_F} \ln C_e \tag{S11}$$

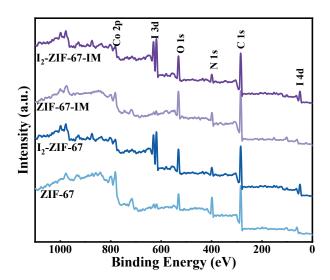


Fig. S3 XPS survey spectra of ZIF-67 and ZIF-67-IM before and after adsorption of I₂

Table S2 The pseudo-first-order kinetic and pseudo-second-order kinetic model parameters of the iodine adsorption process of ZIF-67 and ZIF-67-IM materials.

Sample -	Pseudo-first-order model			Pseudo-second-order model		
	k ₁ (h ⁻¹)	$q_{\rm e}({\rm mg}\cdot{\rm g}^{-1})$	R^2	$k_2 \left(\mathbf{g} \cdot \mathbf{m} \mathbf{g}^{-1} \cdot \mathbf{h}^{-1} \right)$	$q_{\rm e}({\rm mg}\cdot{\rm g}^{-1})$	R^2
ZIF-67	0.157	562.5	0.962	0.001	900.9	0.999
ZIF-67-IM	0.136	541.3	0.931	0.001	885.0	0.999

Table S3 Langmuir and Freundlich model parameters of ZIF-67 and ZIF-67-IM iodine adsorption isotherms.

Sample	Langmuir model			Freundlich model			
	$k_{\rm L} ({\rm L\cdot mg^{-1}})$	$q_{\max} \left(\text{mg} \cdot \text{g}^{-1} \right)$	R^2	$k_{\rm F}({\rm mg^{1-n}\cdot L^n\cdot g^{-1}})$	$n_{ m F}$	R^2	
ZIF-67	0.020	2618.2	0.958	371.194	3.369	0.916	
ZIF-67-IM	0.018	2560.9	0.958	326.618	3.224	0.938	