

Supporting Information

Development of Novel AIE-Active Staurosporine-Based Fluorescent Probes with Theranostic Potential

Nannan Chen ^{a, †}, Yuqiu Ye ^{a, †}, Longfeng Zhang ^{b, †}, Xia Wang ^a, Shijie Liu ^a, Xiaoming Chen ^a, Tong Wu ^a, Jingming Zhou ^a, Haipeng Xu ^{*, b} and Lijun Xie ^{*, a}

^a Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P.R. China.

^b Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China.

* Correspondence:

Haipeng Xu Email: penghaixu@163.com

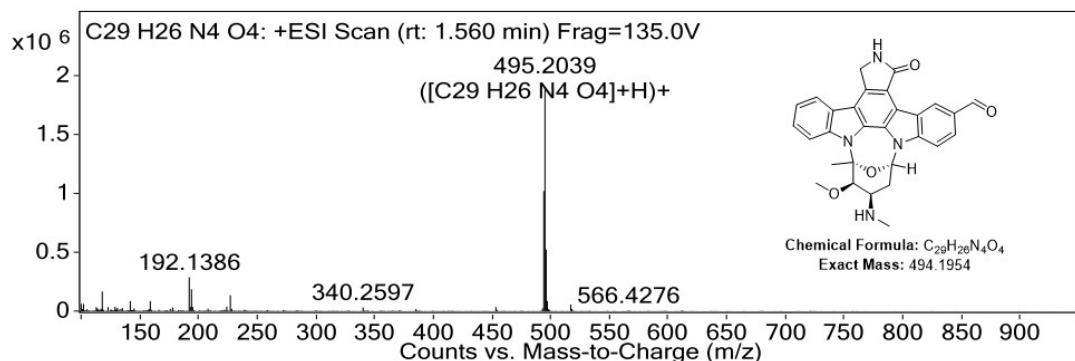
Lijun Xie Email: lijunxie8224@outlook.com

† These authors contributed equally to this work.

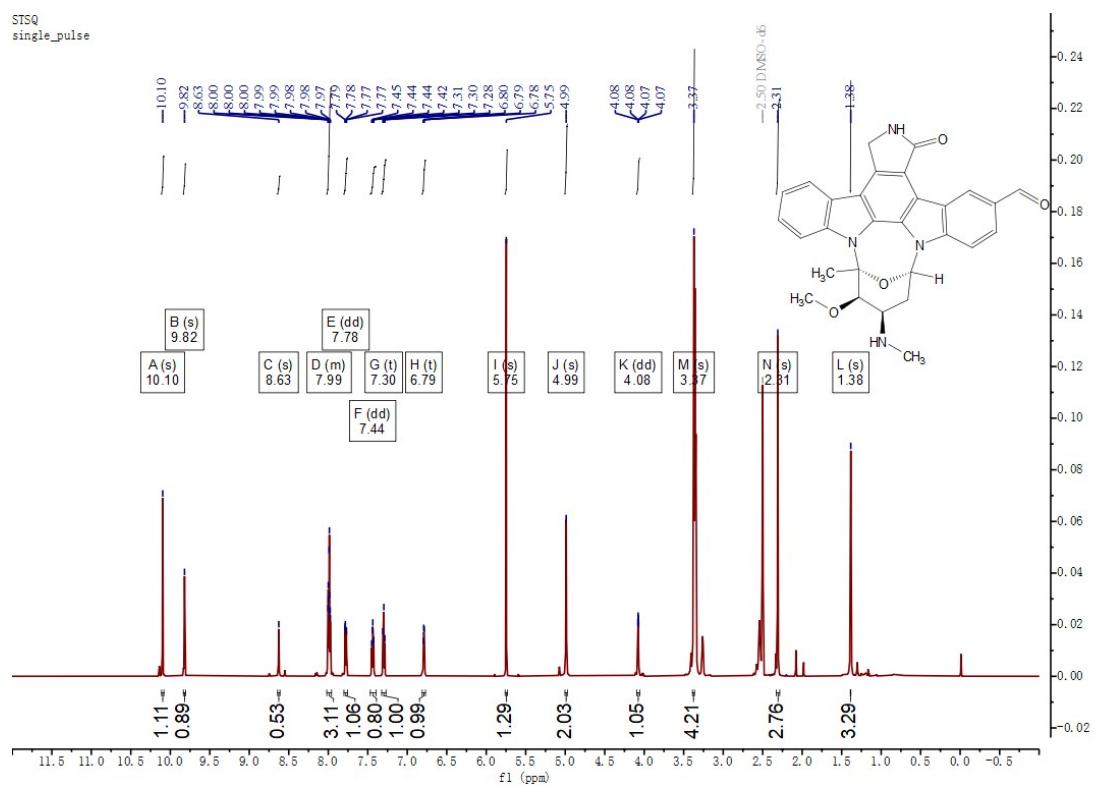
Table of Contents

Section	Note	Page
General experimental information		S3-S4
Characterization of Compounds	Fig. S1-S12	S4-S11
The absorption of compounds in DMSO/H ₂ O mixture	Fig. S13	S12
Fluorescence emission spectra of compounds in DMSO/glycerol mixture	Fig. S14	S12
The absorption spectral and emission spectral of STQ in DMSO/H ₂ O mixture	Fig. S15	S13
Absorption spectral of Y1 , Y2 and Y3 in various solvents	Table S16	S13
Lippert–Mataga plot for Y1 , Y2 and Y3 in various solvents	Fig. S17	S14
Photophysical Properties of Compounds in different solvents (50 μ M).	Table S1	S14
TD-DFT calculations using the SMD model to evaluate emission transitions of Y1 in toluene and DMSO	Table S2	S15

General experimental information


CCK-8 Assay: First, culture the cells under appropriate conditions (37°C, 5% CO₂, humidity-saturated environment). Once the cells reach the logarithmic growth phase, they are separated and processed. The MCF-7 and NCI-N87 cells are then seeded into flat-bottomed 96-well plates at a density of 7500 cells per well, with 100 μ L of complete culture medium, and incubated for 24 hours to allow for adherence and adaptation to the environment. For dark cytotoxicity assessment, after washing the cells three times with PBS, MCF-7 and NCI-N87 cells are incubated with different concentrations (0.1 nM, 1 nM, 10 nM, 100 nM, 1 μ M, 10 μ M) of Y1, Y2, and Y3. All stock solutions are prepared in DMSO (2 mM) and subsequently diluted with complete medium. After a 24-hour incubation, the cells are washed again with PBS three times. Then, 10 μ L of Cell Counting Kit-8 (CCK-8) solution and 90 μ L of PBS are added to each well simultaneously. After an additional 1-hour incubation, the absorbance at 450 nm is measured using a 96-well plate reader. Cell viability is calculated based on the absorbance values at different concentrations, with the control group set at 100%. A curve of cell viability versus drug concentration is plotted, and the IC₅₀ value is determined using nonlinear regression analysis.

Fluorescence imaging: First, 100 μ L MCF-7 cell suspension was added to 1 mL medium and incubated overnight in a cell incubator. Then the cells were washed with PBS 1-2 times, the drug was mixed into a concentration of 10 μ M, and the mixture was mixed according to the ratio of 1 mL: 1 μ L (medium solution: drug). After


incubation in the incubator for 30 min, the medium was washed once with PBS, and finally 1ml fresh medium was used to replace the medium.

Characterization of STQ

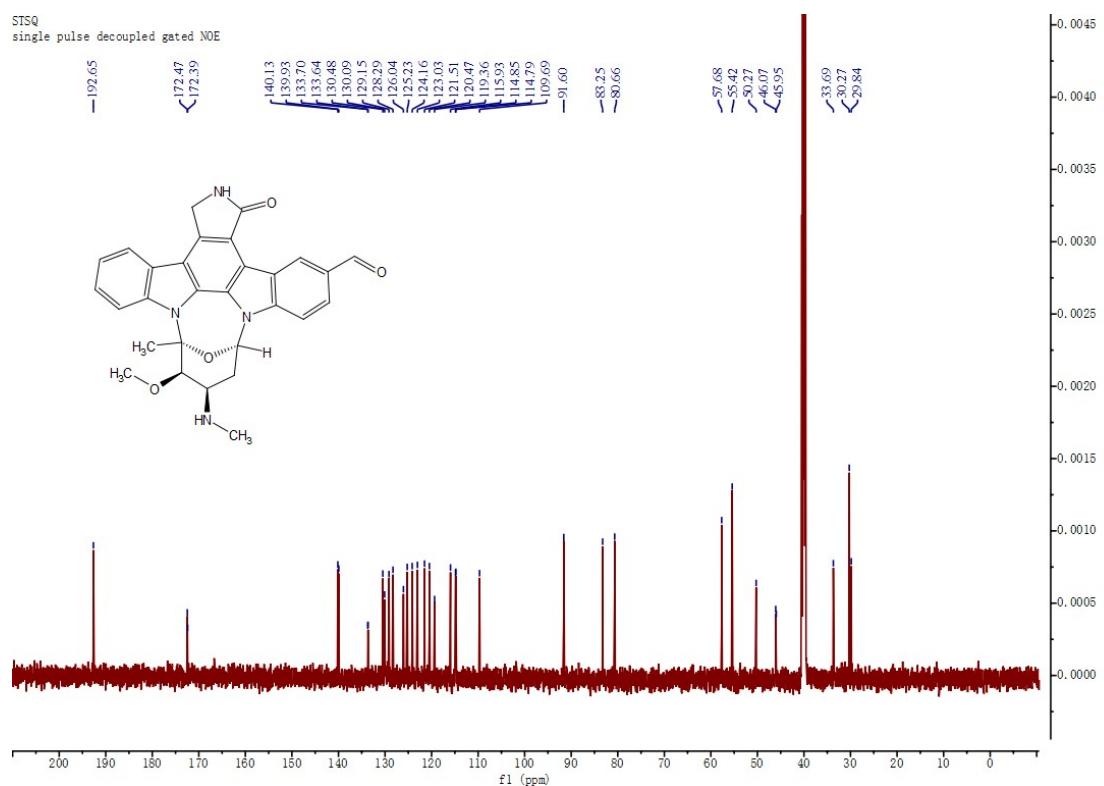
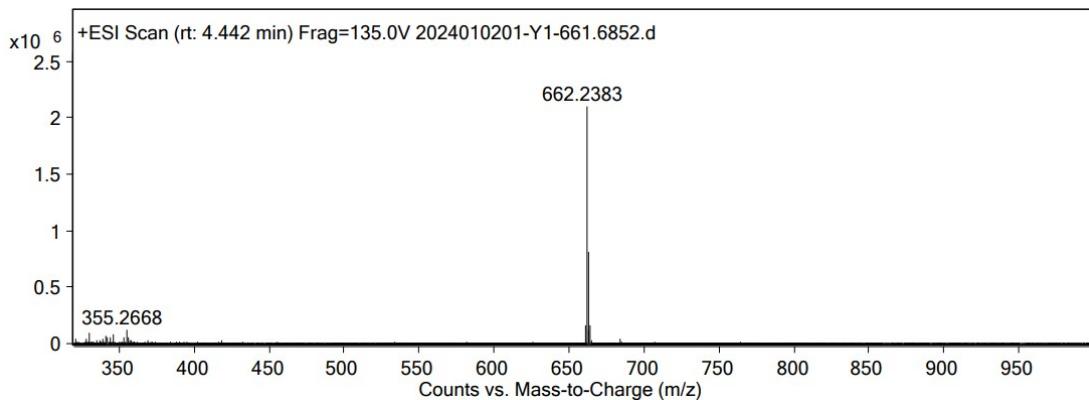
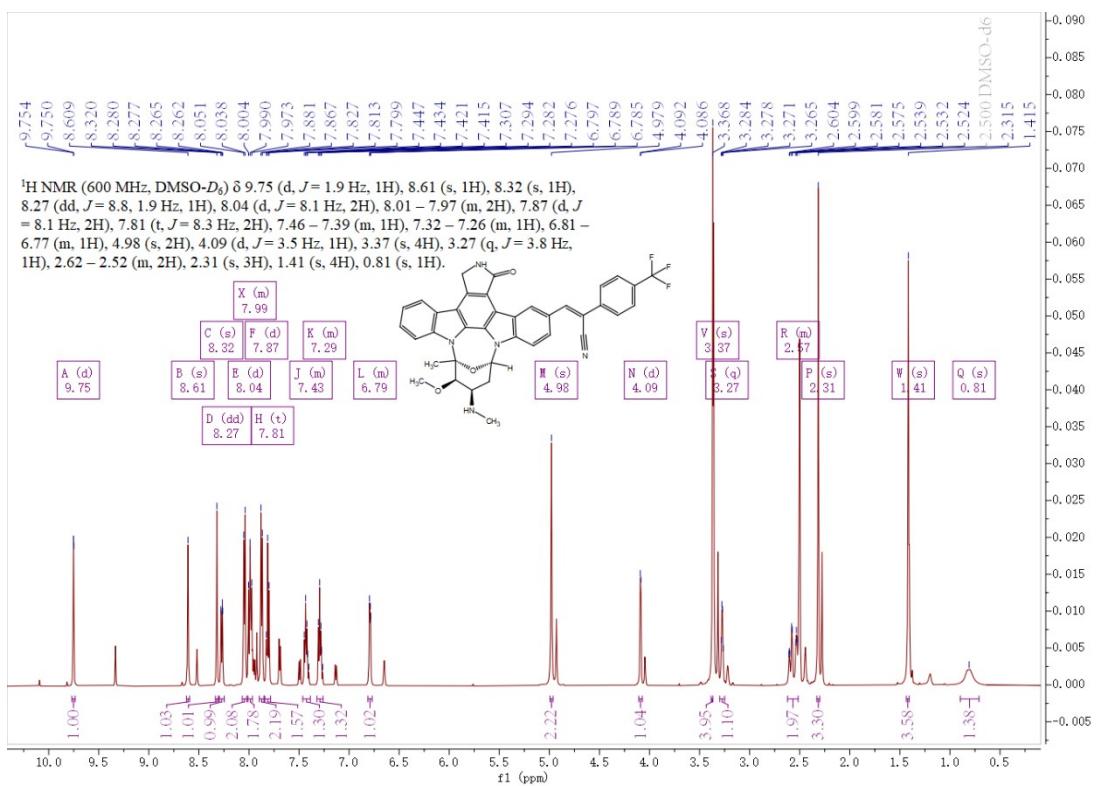

Synthesis of STQ. *Staurosporine* (4.00 g, 8.56 mmol) was dissolved in dichloromethane (240.0 mL) under nitrogen atmosphere and then the solution was transferred to salt ice bath at -15°C. Next, titanium tetrachloride (3.94 g, 34.24 mmol) was added dropwise. Then, dichloromethyl methyl ether (6.50 g, 34.24 mmol) was added dropwise. The reaction was stirred for 0.5 h. After that, the reaction was stirred for another 12 h at room temperature until the reaction was completed. Subsequently, the resulting mixture was poured into ice water, forming a yellow solid that was subsequently filtered to get the crude product. The resultant crude product underwent purification through column chromatography employing dichloromethane and methanol in a 50:1 vol ratio as the eluent. The final product STQ (2.20 g) was obtained as a yellow solid, with a yield of 52.9%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.10 (s, 1H), 9.82 (d, *J* = 1.6 Hz, 1H), 8.66 (s, 1H), 8.04 – 7.95 (m, 3H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.44 (ddd, *J* = 8.6, 7.1, 1.3 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 6.80 (dd, *J* = 5.4, 1.9 Hz, 1H), 4.99 (s, 2H), 4.09 (d, *J* = 3.6 Hz, 1H), 3.37 (s, 3H), 3.27 (q, *J* = 3.8 Hz, 1H), 2.56 (ddt, *J* = 17.8, 9.4, 4.4 Hz, 2H), 2.31 (s, 3H), 1.42 – 1.35 (m, 3H), 0.77 (s, 1H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 192.1, 171.9, 139.6, 139.4, 133.2, 130.0, 129.6, 128.6, 127.8, 125.5, 124.7, 123.6, 122.5, 121.0, 119.9, 118.9, 115.4, 114.3, 114.3, 109.2, 91.0, 82.7, 80.1, 57.1, 54.9, 49.7, 45.5, 33.2, 29.8, 29.3. HRMS (ESI): calcd for C₂₉H₂₆N₄O₄, 495.2027 [M+H]⁺, found, 495.2039 [M+H]⁺.

Fig. S1 HRMS spectrum of STQ.


Fig. S2 ^1H -NMR spectrum of **STQ** in $\text{DMSO}-d_6$.


Fig. S3 ^{13}C -NMR spectrum of **STQ** in $\text{DMSO}-d_6$.

Characterization of Y1

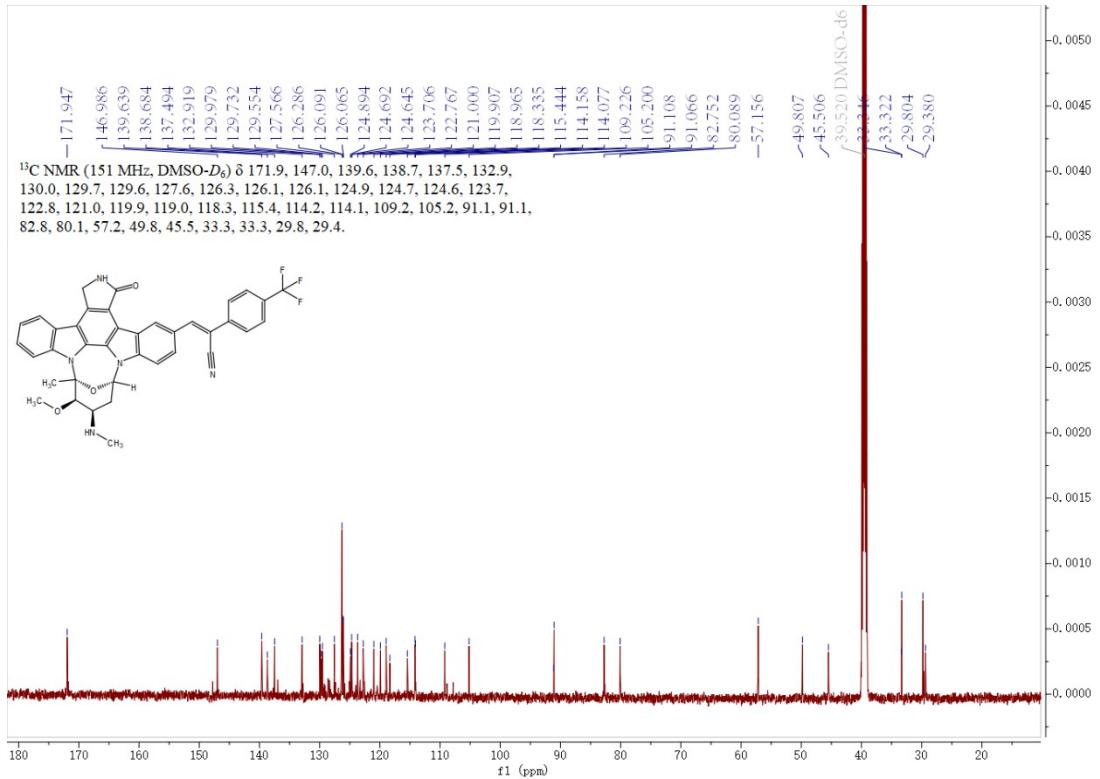
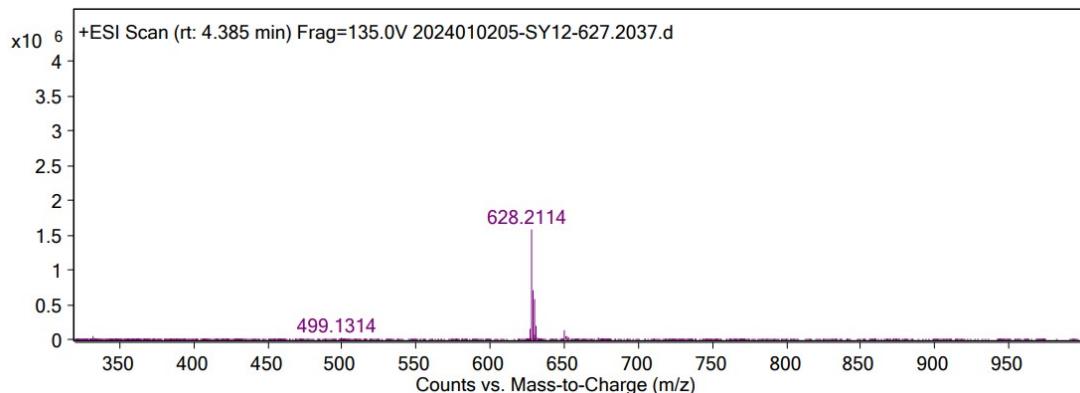
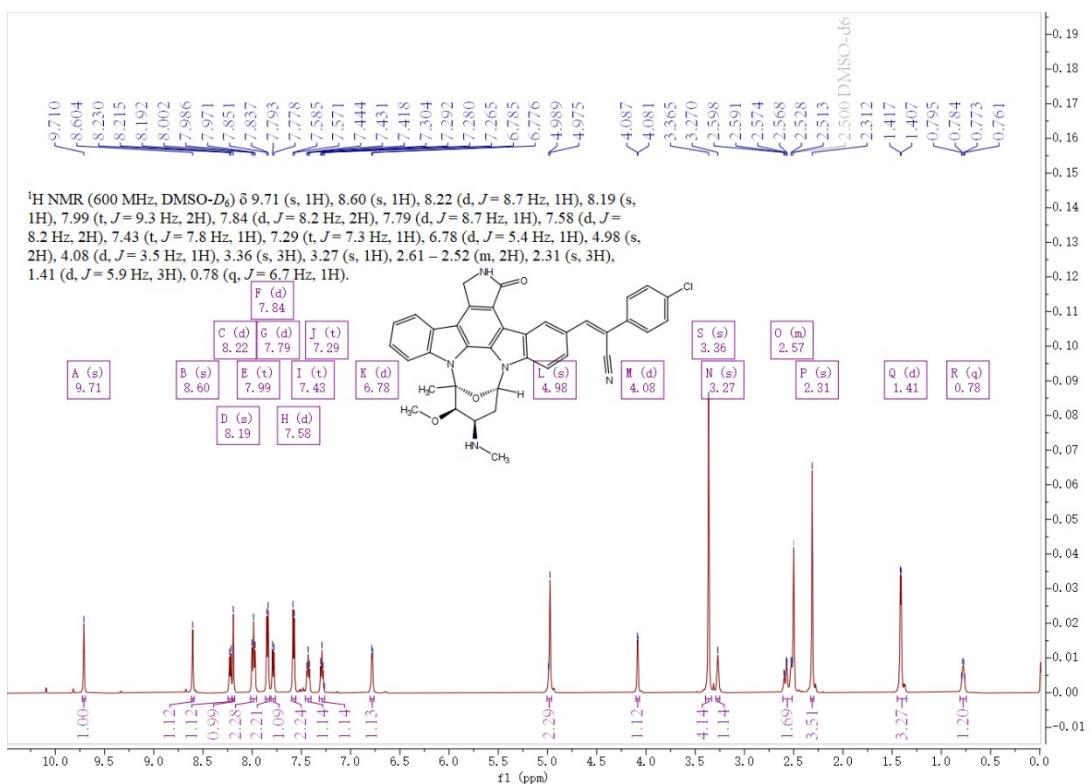

Synthesis of Y1. The key intermediate **STQ** (100 mg, 0.20 mmol) was reacted with 4-(trifluoromethyl)phenylacetonitrile (2.0 mmol) in ethanol (5 mL) using sodium hydroxide (8 mg, 0.2 mmol) as a base. The reaction mixture was stirred at room temperature for 12 hours in the absence of light. After completion of the reaction, confirmed by TLC analysis, the resulting precipitate was collected via filtration. The solid was subsequently washed with water and ethanol to yield the pure product, which was then dried under reduced pressure to give the orange- yellow powder **Y1** (113.6 mg) with the yield 85.1%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.75 (d, *J* = 1.9 Hz, 1H), 8.61 (s, 1H), 8.32 (s, 1H), 8.27 (dd, *J* = 8.8, 1.9 Hz, 1H), 8.04 (d, *J* = 8.1 Hz, 2H), 8.01 - 7.97 (m, 2H), 7.87 (d, *J* = 8.1 Hz, 2H), 7.81 (t, *J* = 8.3 Hz, 2H), 7.46 - 7.39 (m, 1H), 7.32 - 7.26 (m, 1H), 6.81 - 6.77 (m, 1H), 4.98 (s, 2H), 4.09 (d, *J* = 3.5 Hz, 1H), 3.37 (s, 4H), 3.27 (q, *J* = 3.8 Hz, 1H), 2.62 - 2.52 (m, 2H), 2.31 (s, 3H), 1.41 (s, 4H), 0.81 (s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 171.9, 147.0, 139.6, 138.7, 137.5, 132.9, 130.0, 129.7, 129.6, 127.6, 126.3, 126.1, 126.1, 124.9, 124.7, 124.6, 123.7, 122.8, 121.0, 119.9, 119.0, 118.3, 115.4, 114.2, 114.1, 109.2, 105.2, 91.1, 91.1, 82.8, 80.1, 57.2, 49.8, 45.5, 33.3, 33.3, 29.8, 29.4. HRMS (ESI): calcd for C₃₈H₃₁F₃N₅O₃, 662.2374 [M+H]⁺, found: 662.2383 [M+H]⁺.

Fig. S4 HRMS spectrum of **Y1**


Fig. S5 ¹H-NMR spectrum of Y1 in DMSO-*d*₆.


Fig. S6 ¹³C-NMR spectrum of Y1 in DMSO-*d*₆.

Characterization of Y2

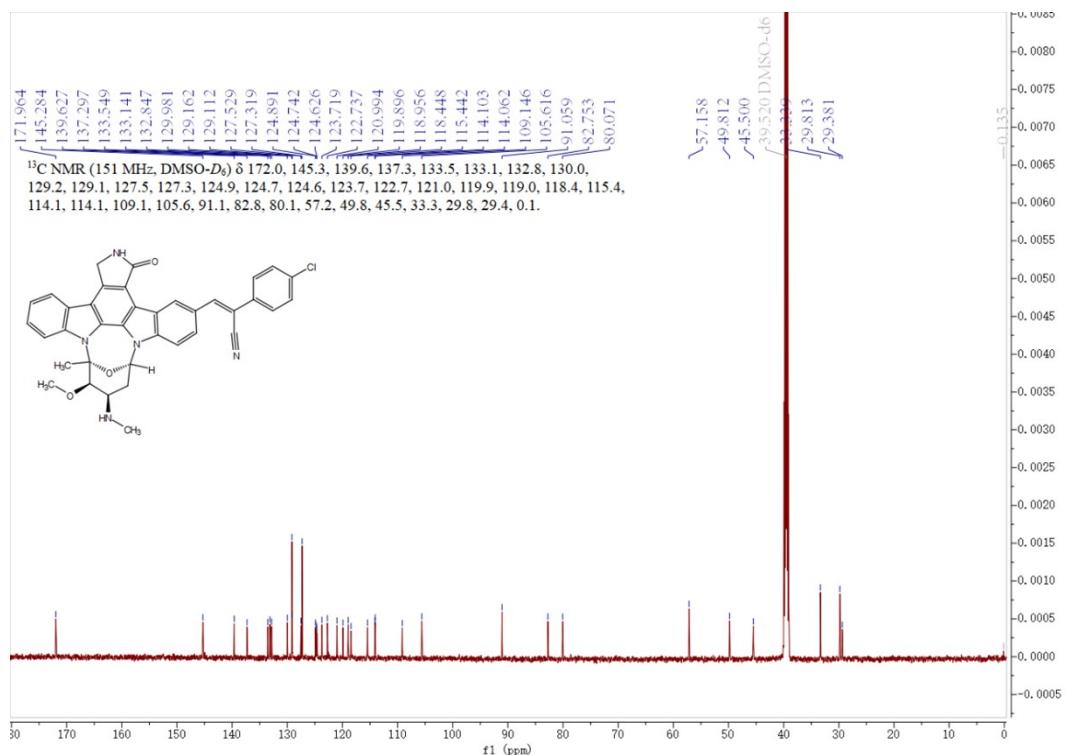
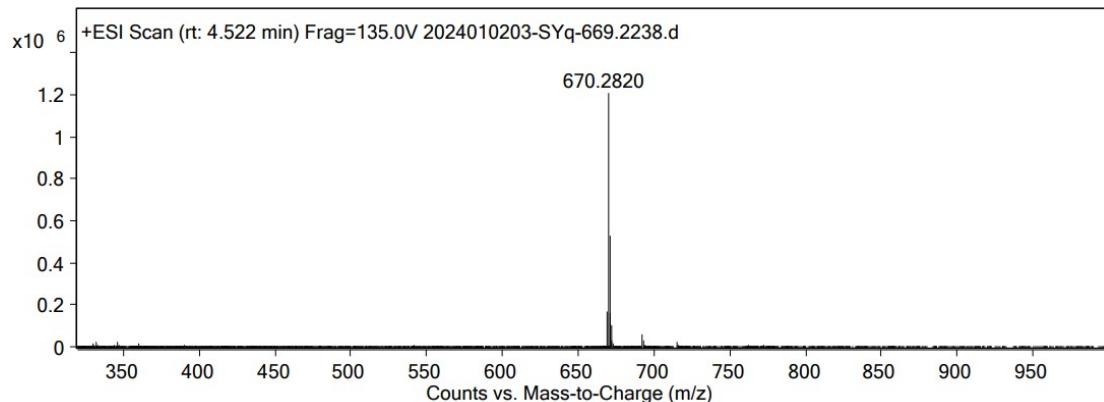
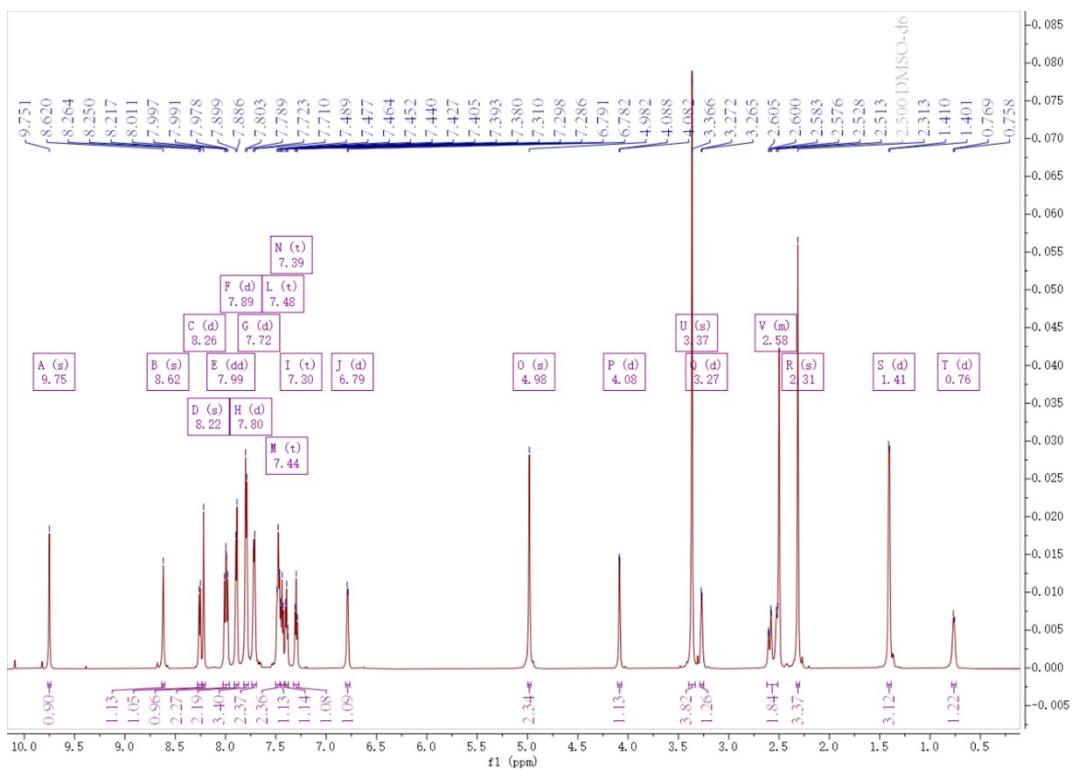

Synthesis of Y2. The synthetic procedure is the same as that of Y1, except using 4-chlorophenylacetonitrile instead of 4-(trifluoromethyl)phenylacetonitrile. Orange-yellow powder **Y2** (111.3 mg) with the yield 87.6%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.71 (s, 1H), 8.60 (s, 1H), 8.22 (d, *J* = 8.7 Hz, 1H), 8.19 (s, 1H), 7.99 (t, *J* = 9.3 Hz, 2H), 7.84 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.29 (t, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 5.4 Hz, 1H), 4.98 (s, 2H), 4.08 (d, *J* = 3.5 Hz, 1H), 3.36 (s, 3H), 3.27 (s, 1H), 2.61 - 2.52 (m, 2H), 2.31 (s, 3H), 1.41 (d, *J* = 5.9 Hz, 3H), 0.78 (q, *J* = 6.7 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 172.0, 145.3, 139.6, 137.3, 133.5, 133.1, 132.8, 130.0, 129.2, 129.1, 127.5, 127.3, 124.9, 124.7, 124.6, 123.7, 122.7, 121.0, 119.9, 119.0, 118.4, 115.4, 114.1, 114.1, 109.1, 105.6, 91.1, 82.8, 80.1, 57.2, 49.8, 45.5, 33.3, 29.8, 29.4, 0.1. HRMS (ESI): calcd for C₃₇H₃₁ClN₅O₃, 628.2110 [M+H]⁺, found: 628.2114 [M+H]⁺.

Fig. S7 HRMS spectrum of **Y2**.


Fig. S8 ^1H -NMR spectrum of **Y2** in $\text{DMSO}-\text{d}_6$.


Fig. S9 ^{13}C -NMR spectrum of **Y2** in $\text{DMSO}-\text{d}_6$.

Characterization of Y3

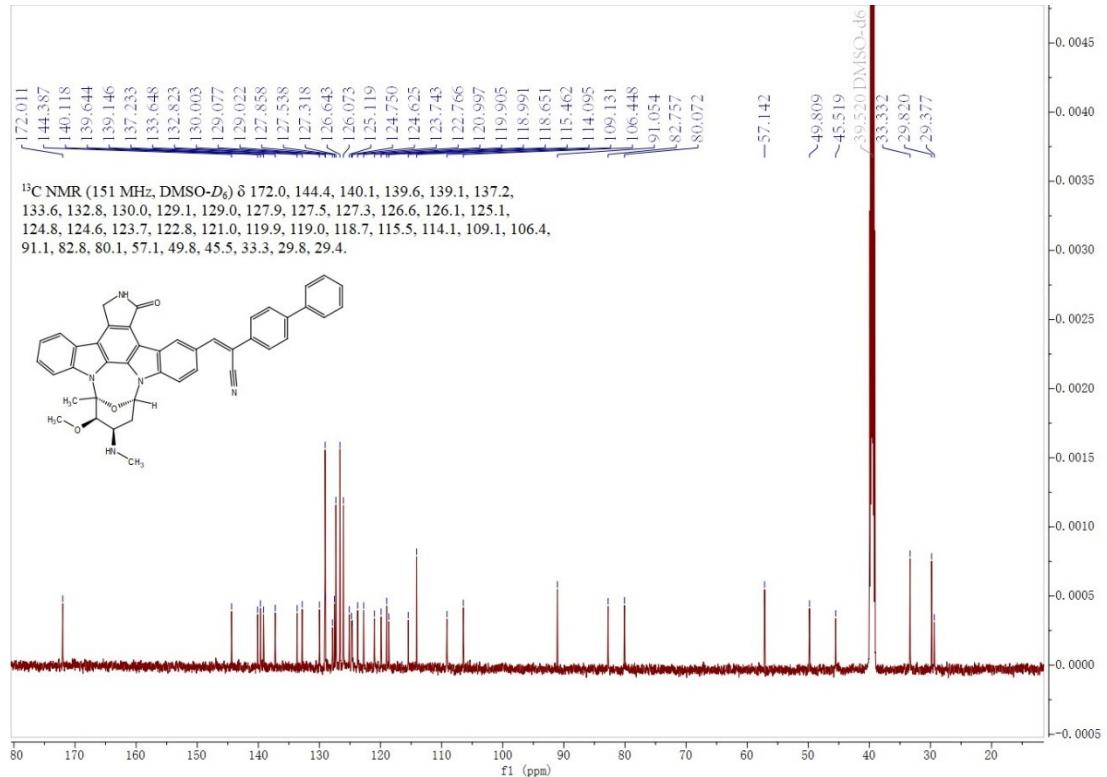

Synthesis of Y3. The synthetic procedure is the same as that of Y1, except using 4-biphenylacetonitrile instead of 4-(trifluoromethyl)phenylacetonitrile. Orange- yellow powder **Y3** (100.2 mg) with the yield 74.2%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.75 (s, 1H), 8.62 (s, 1H), 8.26 (d, *J* = 8.6 Hz, 1H), 8.22 (s, 1H), 7.99 (dd, *J* = 11.8, 8.1 Hz, 2H), 7.89 (d, *J* = 7.9 Hz, 2H), 7.80 (d, *J* = 8.3 Hz, 3H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.3 Hz, 1H), 6.79 (d, *J* = 5.4 Hz, 1H), 4.98 (s, 2H), 4.08 (d, *J* = 3.4 Hz, 1H), 3.37 (s, 4H), 3.27 (d, *J* = 4.5 Hz, 1H), 2.62 – 2.51 (m, 2H), 2.31 (s, 3H), 1.41 (d, *J* = 5.7 Hz, 3H), 0.76 (d, *J* = 6.9 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 172.0, 144.4, 140.1, 139.6, 139.1, 137.2, 133.6, 132.8, 130.0, 129.1, 129.0, 127.9, 127.5, 127.3, 126.6, 126.1, 125.1, 124.8, 124.6, 123.7, 122.8, 121.0, 119.9, 119.0, 118.7, 115.5, 114.1, 109.1, 106.4, 91.1, 82.8, 80.1, 57.1, 49.8, 45.5, 33.3, 29.8, 29.4. HRMS (ESI): calcd for C₄₃H₃₆N₅O₃, 670.2813 [M+H]⁺, found: 670.2820 [M+H]⁺.

Fig. 10 HRMS spectrum of **Y3**

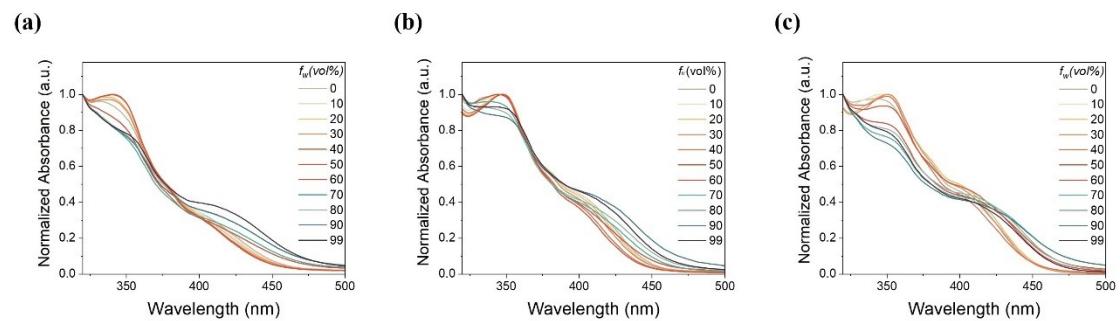
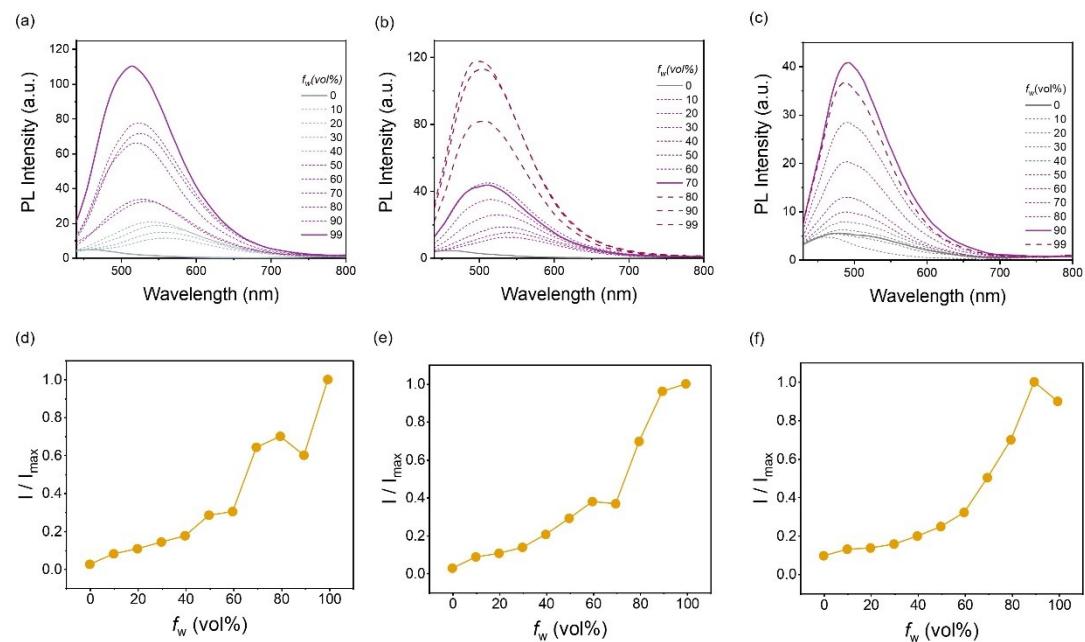
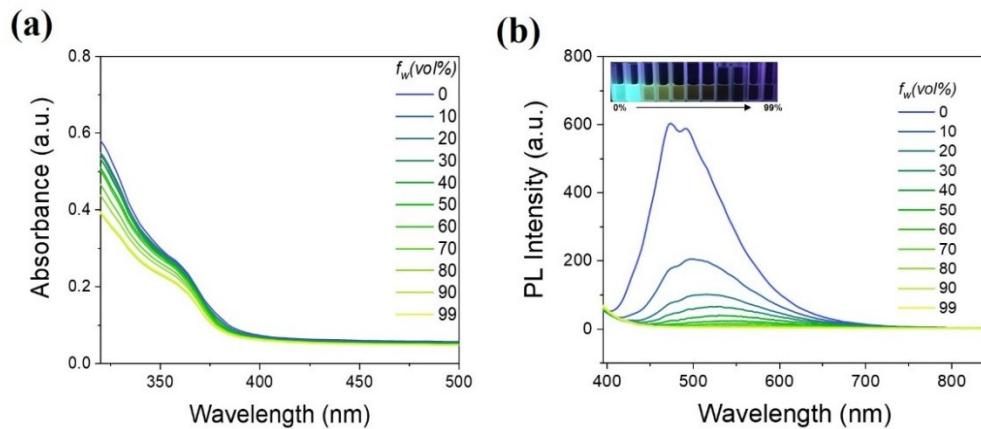


Fig. 11 ^1H -NMR spectrum of **Y3** in $\text{DMSO}-d_6$.


Fig. 12 ^{13}C -NMR spectrum of **Y3** in $\text{DMSO}-d_6$.

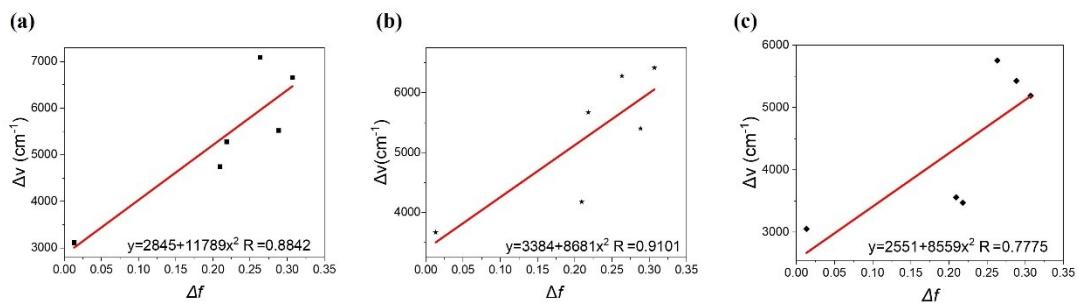
The absorption of compounds in DMSO/H₂O mixture


Fig. S13 Absorption spectra of **Y1** (a), **Y2** (b) and **Y3** (c) in DMSO/H₂O mixture with different f_w (1.0×10^{-5} mol L⁻¹).

Fluorescence emission spectra of compounds in DMSO/glycerol mixture

Fig. S14 Fluorescence emission spectra of (a) **Y1**, (b) **Y2** and (c) **Y3** in pure DMSO with increasing glycerol fractions. Plots of FL emission intensity (I/I_{\max}) versus the composition of the DMSO/glycerol mixture of (d) **Y1**, (e) **Y2** and (f) **Y3**.

The absorption spectral and emission spectral of STQ in DMSO/H₂O mixture


Fig. S15 (a) Absorption spectra of **STQ** in DMSO/H₂O mixture with different f_w . (b) The PL spectra of **STQ** in pure DMSO with increasing water fractions. (Inset: photographs of **STQ** in different DMSO/H₂O mixtures under 365 nm hand-held UV lamp irradiation).

Absorption spectral of Y1, Y2 and Y3 in various solvents

Fig. S16 UV-vis absorption spectra of Y1 (a), Y2 (b) and Y3 (c) (5×10^{-5} mol/L) in different solvents.

Lippert–Mataga plot for Y1, Y2 and Y3 in various solvents

Fig. S17 Lippert–Mataga plot for Y1 (a), Y2 (b) and Y3 (c) in various solvents.

Table S1. Photophysical Properties of Compounds in different solvents (50 μM).

Compd.	Toluene	THF	DCM	ACN	EtOH	DMSO
Y1	$\lambda_{\text{abs}}(\text{nm})^{\text{a}}$	338	336	340	340	340
	$\lambda_{\text{em}}(\text{nm})^{\text{b}}$	472	508	522	560	532
	$\Delta\lambda(\text{nm})^{\text{c}}$	134	172	182	220	192
Y2	$\Delta V(\text{cm}^{-1})^{\text{d}}$	8399	10077	10255	11555	10615
	$\lambda_{\text{abs}}(\text{nm})^{\text{a}}$	340	338	340	340	342
	$\lambda_{\text{em}}(\text{nm})^{\text{b}}$	522	518	520	540	518
Y3	$\Delta\lambda(\text{nm})^{\text{c}}$	182	180	180	200	178
	$\Delta V(\text{cm}^{-1})^{\text{d}}$	10255	10281	10181	10893	10107
	$\lambda_{\text{abs}}(\text{nm})^{\text{a}}$	342	338	340	340	342
	$\lambda_{\text{em}}(\text{nm})^{\text{b}}$	462	480	476	530	522
	$\Delta\lambda(\text{nm})^{\text{c}}$	120	142	136	190	182
	$\Delta V(\text{cm}^{-1})^{\text{d}}$	7595	8752	8403	10544	10255

^a the maximum absorption wavelength; ^b the maximum emission wavelength; ^c the value of stokes shift; ^d ΔV were calculated using the equation $(1/\lambda_{\text{abs}} - 1/\lambda_{\text{em}}) \times 10^7$.

Density Functional Theory (DFT) Calculations

Density functional theory (DFT) calculations were performed using Gaussian 09 software at the B3LYP/6-311G level with the implicit solvent model (SMD, DMSO). The optimized geometries

and electronic structures of the compounds were first obtained at the B3LYP/6-31G level, incorporating D3 dispersion correction.

Table S2. TD-DFT calculations using the SMD model to evaluate emission transitions of Y1 in toluene and DMSO

Solvents	Excited State	E_g (eV) ^a	λ_{em} (nm) ^b	f (oscillator strengths)
Toluene	$S_0 \rightarrow S_1$	2.80	443	0.70
DMSO	$S_0 \rightarrow S_1$	2.70	460	0.92

^a Energy gap between S_0 and S_1 ; ^b the maximum emission wavelength