Supporting Information

Mg-doped manganese-based layered double oxide catalyst realizes the highly selective oxidation of toluene derivatives to aldehydes

Deqin Liang^a, Yu Wang^a, Xiaojing Yin^a, Ziyan Liu^a, Jizhou Du^b, Junfeng Qian^a, Mingyang He^{a,*}, Weiyou Zhou ^{a,*}

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University,

Changzhou 213164, China

^b Intellectual Property Management Office, PetroChina Co., Ltd., Beijing 100101, China

Benzyl alcohol oxidizes to benzaldehyde

Typically, a mixture of 1.0 mmol benzyl alcohol, 2 mL HFIP, 25mg NHPI and 75 mg MnMgAl-LDO were magnetically stirred at 40 $^{\circ}$ C under 1 atm of O_2 atmosphere. The reaction was analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). The conversion rate of benzyl alcohol was 12% after 12 h reaction.

Scheme S1 Oxidation of benzyl alcohol to benzaldehyde under the standard reaction conditions.

Characterization of the catalyst

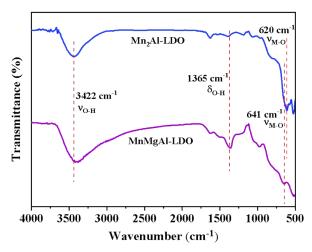


Fig. S1. FT-IR spectra of the MnMgAl-LDO and Mn_2Al -LDO.

Characterization of the recycled catalyst

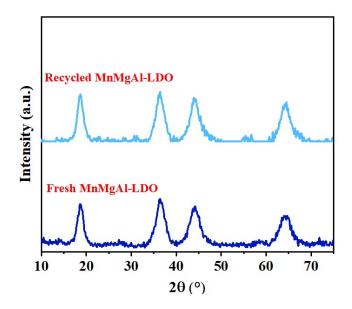


Fig. S2. XRD of the recycled MnMgAl-LDO.

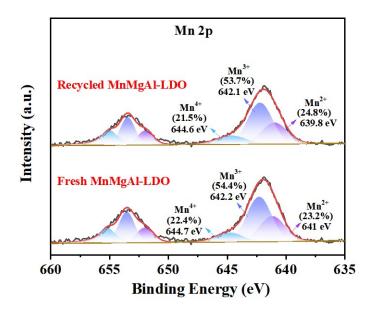


Fig. S3. XPS spectra of Mn 2p of recyled MnMgAl-LDO.

Table S1. ICP of the recycled MnMgAl-LDO.

Samples	Content (wt%)			M. M. A1	
	Mn	Mg	Al	Mn:Mg:Al	
MnMgAl-LDO(Fresh)	25.80	13.80	12.40	1.02:1.25:1	
MnMgAl-LDO(Recycled)	25.04	13.12	11.82	1.04:1.25:1	

Table S2. Some typical catalytic systems based on NHPI are used for aerobic oxidation of toluene.

Entry	Catalyst	Reaction conditions	Conv. /%	Sel. /%	Ref.
1	$Co(OAc)_2$	NHPI, CH ₃ CN, O ₂	84.0	4.0	[1]
2	porphyrin-biscopper hexaphyrin	NHPI, CH ₃ CN, O ₂	21.5	59.3	[2]
3	CoOx/SiO ₂	NHPI, HFIP, O ₂	91.0	68.2	[3]
5	CoMnAl-LDO	NHPI, HFIP, O ₂	55.7	58	[4]
6	MnMgAl-LDO	NHPI, HFIP, O_2	77.0	86.0	This work
7	MnMgAl-LDO	NHPI, HFIP, Air	71.2	81.3	This work

References

- [1] Ishii Y, Sakaguchi S, Iwahama T. Innovation of hydrocarbon oxidation with molecular ox ygen and related reactions. Advanced Synthesis & Catalysis, 2001, 343(5): 393–427.
- [2] Chen H, Wang L, Xu S, et al. Selective functionalization of hydrocarbons using a ppm b ioinspired molecular tweezer via proton-coupled electron transfer. ACS Catalysis, 2021, 11(12): 6810–6815.
- [3] Shi G, Xu S, Bao Y, et al. Selective aerobic oxidation of toluene to benzaldehyde on im mobilized CoO_x on SiO₂ catalyst in the presence of N-hydroxyphthalimide and hexafluorop ropan-2-ol. Catalysis Communications, 2019, 123, 73–78.
- [4] Zhang T, Wang G, Xu X, et al. Application of Co-Mn-Al sheet-like metal oxide catalysts in the liquid phase conversion of toluene to benzaldehyde. Applied Catalysis A: General, 2023, 663: 119314.