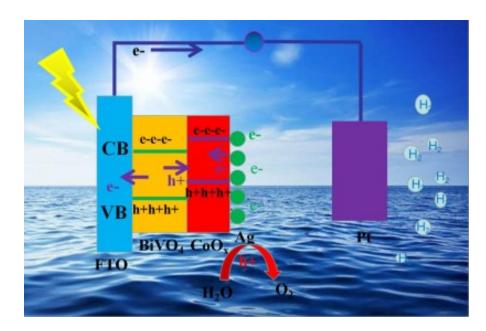
Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

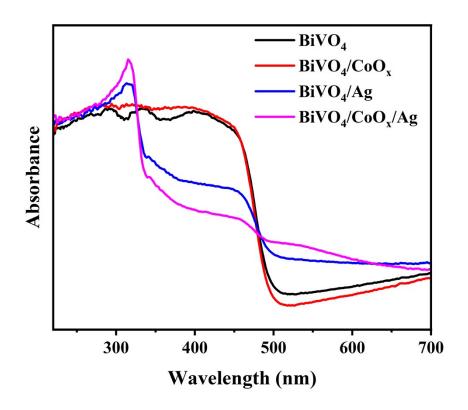
Supporting Information

Ag-Boosted CoO_x/BiVO₄ p-n Heterojunction for Efficient Photoelectrochemical Water Splitting


Zhouchen Li a,1, Linyao Deng a,1, Tingting Liua, Yihui Chena, Yutong Guo a, Jingwei Huang a*

^a College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China

^{*}Corresponding author. E-mail: huangjingwei2009@163.com, huangjingwei@nwnu.edu.cn


¹ These authors contributed equally to this work

Supplementary Figures

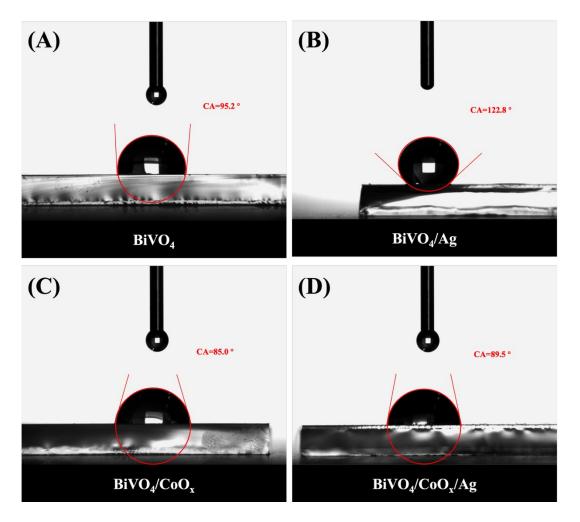


Fig. S1. Schematic illustration for the charge transfer and separation as well as PEC water splitting process of BiVO₄/CoO_x/Ag architecture under visible light illumination.

As shown in Fig. S1, under simulated solar illumination from the backside, the BiVO₄/CoO_x/Ag photoanode undergoes charge generation via photon absorption. Within the n-type BiVO₄ semiconductor, electrons are excited to the conduction band (CB) while holes remain in the valence band (VB). Concurrently, the p-type CoO_x layer generates electron-hole pairs upon illumination. A type-II p-n heterojunction forms due to band alignment mismatch between BiVO₄ and CoO_x, establishing a built-in electric field at their interface. This field drives electrons from the CoO_x CB to the BiVO₄ CB, followed by migration through the external circuit to the Pt counter electrode for water reduction. Simultaneously, holes transfer from the BiVO₄ VB to the CoO_x VB, facilitating water oxidation at the electrode-electrolyte interface. Plasmonic excitation of Ag nanoparticles under illumination generates hot electrons that inject into the CoO_x CB. This process synergistically accelerates electron transport and suppresses charge recombination.

Fig. S2. UV-vis DRS of BiVO₄, BiVO₄/CoO_x, BiVO₄/Ag and BiVO₄/CoO_x/Ag.

Fig. S3. Static water contact angle tests of (A) BiVO₄, (B) BiVO₄/Ag, (C) BiVO₄/CoO_x, (D) BiVO₄/CoO_x/Ag.

As shown in Fig. S3, static water contact angle (CA) measurements reveal distinct interfacial properties: BiVO₄/Ag exhibits strong hydrophobicity (CA = 122.8°), attributed to the low surface energy of metallic Ag. In contrast, hydroxyl-rich CoO_x enhances hydrophilicity when deposited on BiVO₄ (CA = 85.0°). The ternary BiVO₄/CoO_x/Ag system demonstrates moderated hydrophilicity (CA = 89.5°) compared to pristine BiVO₄ (CA = 95.2°), suggesting synergistic interfacial modification. This optimized surface wettability facilitates electrolyte diffusion across the electrode-electrolyte interface, thereby enhancing photocurrent density during water oxidation.

Table S1 Quantitative values obtained from the equivalent circuit for all electrodes.

Electrodes	$R_s(\Omega)$	$R_{ct}(\Omega)$
BiVO ₄	20.3	966.0
BiVO ₄ (dark)	21.6	1261.0
BiVO ₄ /Ag	23.2	746.0
BiVO ₄ /Ag(dark)	25.7	1069.0
BiVO ₄ /CoO _x	20.7	705.5
$BiVO_4/CoO_x(dark)$	22.5	1292.0
BiVO ₄ /CoO _x /Ag	22.3	190.4
BiVO ₄ /CoO _x /Ag(dark)	23.5	1306.0