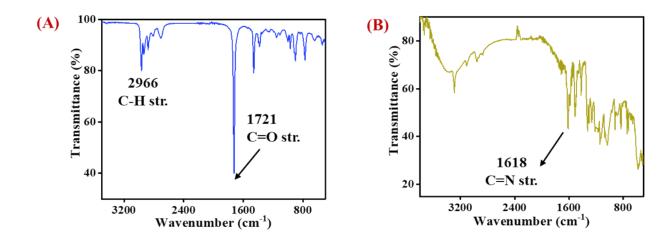
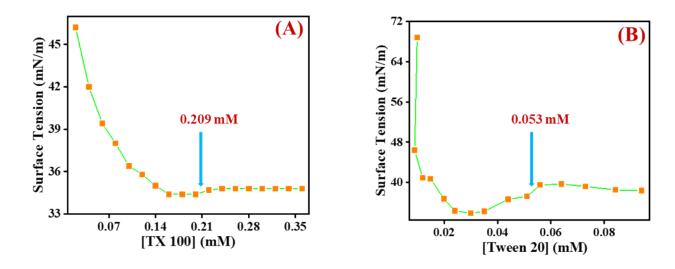
Supporting Information File

Unveiling the Role of Structure-Polarity Interplay in Non-Ionic Micellar Catalyzed Oxidative Transformation of Isoleucine: Towards Sustainable Oxidation in Aqueous Media

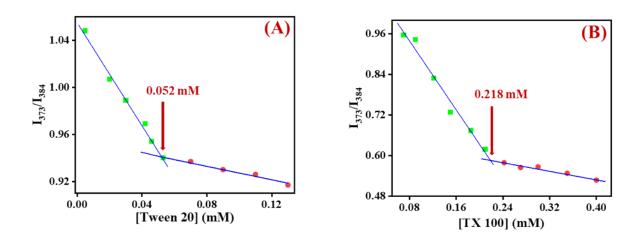
Priya Karmakar^a, Mousumi Layek^a, Kripasindhu Karmakar^a, Sandip Kundu^a, Sk Mehebub Rahaman^a, Nargis Khatun^a, Arnab Patra^a, Ujjwal Mandal^a,*, Bidyut Saha^a,*

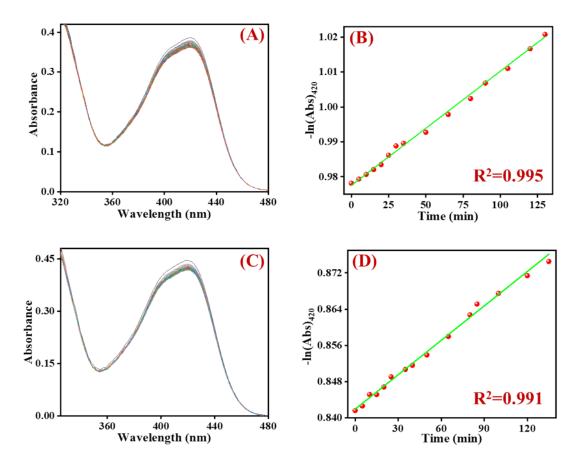

^aSurfactant Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Burdwan-713104, West Bengal, India

Email addresses: umandal@chem.buruniv.ac.in (UM), <u>b_saha31@redifmail.com</u> (BS), bsaha@chem.buruniv.ac.in (BS)


^{*}Corresponding authors

Content


Figure no.	Figure caption			
Figure S1	FT-IR spectrum: (A) oxidized product (2-methylbutanal) and (B) hydrazone derivative of corresponding aldehyde product			
Figure S2	CMC determination of surfactants by surface-tension method; (A) TX 100 and (B) Tween 20 micellar medium	4		
Figure S3	Determination of CMC using fluorometric method for (A) Tween 20 (B) TX-100 micellar microenvironment.	5		
Figure S4	Sequential scanned spectra and plot of $-\ln(Abs)_{420} vs$ time (minutes) of oxidation of isoleucine in presence of (A) in 0.02 mM Tween 20 at 5 min int and (B) in 0.4 mM TX 100 at 5 min int. [Reaction condition: [isoleucine] = 6×10^{-3} (M), [NaOH] = 0.8 (M), [Fe(CN) ₆] ³⁻ = 4×10^{-4} (M), T = 30 °C.]	6		
Figure S5	¹ H-NMR spectrum (in D ₂ O solvent) of (A) Tween 20, (B) Tween 20 + isoleucine, (C) TX 100, and (D) TX 100 + isoleucine	7		
Table S1	The hydrodynamic diameter (nm) and polydispersity index (PDI) of surfactant systems in presence and absence of substrate as obtained from the dynamic light scattering (DLS) measurement	8		
Table S2	The Fitting parameters for 0.2 mm Tween 20 micellar medium	9		
Table S3	The Fitting parameters for 0.8 mm TX 100 micellar medium	10		


Figure S1. FT-IR spectrum: (A) oxidized product (2-methylbutanal) and (B) hydrazone derivative of corresponding aldehyde product

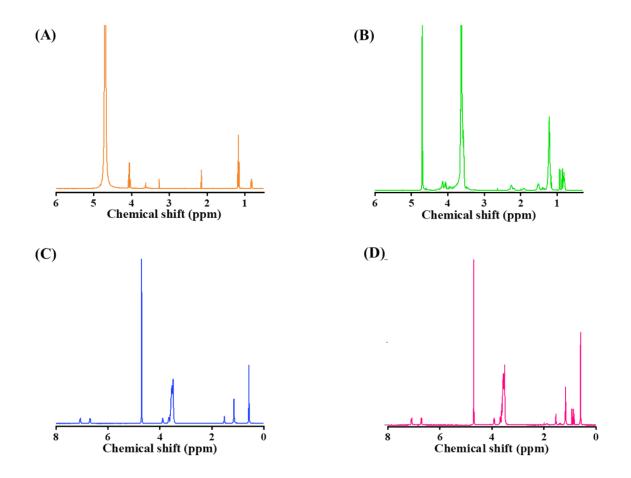

Figure S2: CMC determination of surfactants by surface-tension method; (A) TX 100 and (B) Tween 20 micellar medium

Figure S3.Determination of CMC using fluorometric method for (A) Tween 20 (B) TX-100 micellar microenvironment.

Figure S4. Sequential scanned spectra and plot of -ln(Abs)420 vs time (minutes) of oxidation of isoleucine in presence of (A) in 0.02 mM Tween 20 at 5 min int and (B) in 0.4 mM TX 100 at 5 min int. [Reaction condition: [isoleucine] = 6×10^{-3} (M), [NaOH] = 0.8 (M), [Fe(CN)₆]³⁻ = 4×10^{-4} (M), T = 30 °C.]

Figure S5. ¹H-NMR spectrum (in D₂O solvent) of (A) Tween 20 , (B) Tween 20 + isoleucine, (C) TX 100, and (D) TX 100 + isoleucine

Systems	Hydrodynamic diameter(nm)	PDI
0.2 mM TW-20	44.5	0.790
0.2 mM TW-20 +isoleucine	69.5	0.383
0.8 mM TX-100	32.2	0.210
0.8 mM TX-100 +isoleucine	43.3	0.353

Table S1: The hydrodynamic diameter (nm) and polydispersity index (PDI) of surfactant systems in presence and absence of substrate as obtained from the dynamic light scattering (DLS) measurement

Table S2: The Fitting parameters for 0.2 mM Tween 20 micellar medium

Composition	$ au_1$	<i>a</i> ₁ (%)	$ au_2$	^a ₂ (%)	(τ) (ns)	χ²
0.2 mM Tween 20	0.5797895	71.28	6.789833	28.72	5.7038	1.028236

Equation used for life time calculation:

$$<\tau>=(a1(\tau_1)^2+a2(\tau_2)^2)/(a1\tau_1+a2\tau_2)$$

Table S3: The Fitting parameters for 0.8 mM TX 100 micellar medium

Composition	$ au_1$	<i>a</i> ₁ (%)	$ au_2$	a ₂ (%)	$ au_3$	<i>a</i> ₃ (%)	(τ) (ns)	χ²
0.8 mM TX 100	4.012909	6.69	189.4214	62.52	0.106982	30.79	189	1.088399

Equation used for life time calculation:

$$<\tau>=(a1(\tau_1)^2+a2(\tau_2)^2+a3(\tau_3)^2)/(a1\tau_1+a2\tau_2+a3\tau_3)$$