Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Unlocking reactivity: synthetic, structural and catalytic exploration of ruthenium(II) complexes featuring pdc and NHC ligands

Babatunde Awe, a Glendin Swart, b Elizabeth Erasmus, b Marilé Landman, *a Frederick P. Malan*a

- ^a Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa.
- ^b Department of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein, 9300, South Africa.
 - *Corresponding authors: Dr Frikkie Malan (frikkie.malan@up.ac.za), Prof Marilé Landman (marile.landman@up.ac.za)

SUPPLEMENTARY INFORMATION

- 1. Synthetic details of complexes C2-C12.
- 2. NMR spectra of complexes C2-C12 (Figures S1-S21)
- 3. Crystallographic details of C2-C6, C8-C12 (Tables S1-S3)
- 4. Electrochemical details (Figure S22)
- 5. Catalysis details (Table S4, Figures S23-S26, Scheme S1)

- 1. Synthetic details of complexes **C2-C12**.
 - C2. The ligand (0.27g, 1.5 eq) and Ag_2O (0.18g, 1 eq) were stirred in DCM (10 mL) at 45 °C under an argon atmosphere in a Schlenk tube for 1 h. Complex C1 (0.30, 1 eq) was added to the mixture and allowed to stir overnight. The reaction mixture was filtered. The product was purified by gravity silica gel column chromatography using acetone as eluent. Yield: 39%. 1H NMR (400 MHz, CDCl₃) δ_H 8.11 (d, J = 7.7 Hz, 2H, CH of pdc), 7.89 (dd, J = 8.0, 7.4 Hz, 1H, CH of pdc), 6.61 (s, 2H, CH of imidazole), 4.69-4.68 (m, 2H, CH of COD), 3.88-3.87 (m, 2H, CH of COD), 3.68 (s, 6H, CH₃ of imidazole), 2.80-2.60 (m, 4H CH₂ of COD), 2.37-2.28 (m, 2H, CH₂ of COD), 2.19-2.12 (m, 2H, CH₂ of COD). ^{13}C NMR (400 MHz, CDCl₃) δ_C 170.9 (CO of pdc), 169.5 (NCN of imidazole), 149.8 (CCH of pdc), 135.8 (CH of pdc), 127.0 (CH of pdc), 124.5 (CH of imidazole), 117.5 (CH of COD), 86.2 (CH of COD), 39.8 (CH₃ of imidazole), 31.7 (CH₂ of COD), 27.5 (CH₂ of COD). HR-MS (ESI) m/z 472.1004 calcd 470.4910 (M*+2H). Elemental Analysis: calcd (C2.2H₂O): C, 47.43; H, 5.37; N, 8.30; found: C, 47.82, H, 5.30, N, 8.45.
 - C3. The ligand (0.16g, 1.5 eq) and Ag₂O (0.15g, 1 eq) were refluxed in DCM (10 mL) under an argon atmosphere in a Schlenk tube for 1 h. Complex C1 (0.24g, 1 eq) was added to the mixture and allowed to stir overnight. The reaction mixture was filtered. The product was purified by gravity silica gel column chromatography using acetone as eluent. Yield: 16%. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.04 (dd, J = 18.2, 7.7 Hz, 2H, CH of pdc), 7.86 (dd, J = 10.4, 5.0 Hz, 1H, CH of pdc), 6.66 (d, J = 1.9 Hz, 1H, CH of imidazole), 6.61 (d, J = 1.9 Hz, 1H, CH of imidazole), 5.28-4.87 (m, 2H, CH_2 of alkenyl tether), 4.72 (d, J = 3 Hz, 2H, CH of COD), 4.49-4.48 (m, 1H, CH of alkenyl tether), 3.90-3.80 (m, 2H, CH of COD), 3.76 (s, 3H, CH₃ of imidazole), 3.73 (s, 1H, CH of alkenyl tether), 2.78-2.62 (m, 4H, CH₂ of COD), 2.36-2.30 (m, 2H, CH₂ of COD), 2.19-2.17 (m, 2H, CH₂ of COD), 1.71 (s, 3H, CH₃ of alkenyl tether). 13 C NMR (400 MHz, CDCl₃) $\delta_{\rm C}$ 171.0 (NCN of imidazole), 169.7 (CO of pdc), 143.6 (CCH of pdc), 135.7 (CH of pdc), 126.9 (CH of pdc), 125.1 (CH of imidazole), 123.6 (CH of imidazole), 117.7 (CH of COD), 111.0 (=CH₂ of alkenyl tether), 86.4 (CH of COD), 55.2 (CH₂ of alkenyl tether), 40.1 (CH₃ of imidazole), 31.8 (CH₂ of COD), 27.4 (CH₂ of COD), 20.3 (CH₃ of alkenyl tether). HR-MS (ESI) m/z 512.4423 calcd 510.5560 (M+2H). Elemental Analysis: calcd (C3.0.6CH₂Cl₂): C, 50.48; H, 5.06; N, 7.48; found: C, 50.67, H, 4.99, N, 7.82.
 - **C4**. The ligand (0.20g, 1.5 eq) and Ag_2O (0.12g, 1 eq) were stirred in DCM (10 mL) at 45 °C under an argon atmosphere in a Schlenk tube for 1 h. Complex **C1** (0.21, 1 eq) was added to the mixture and allowed to stir overnight. The reaction mixture was filtered. The product was purified by gravity silica gel column chromatography using acetone as eluent. Yield: 32%. 1H

NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.80-7.78 (m, 2H, CH of pdc), 7.35 (s, 1H, CH of pdc), 7.18-7.10 (m, 3H, CH of benzyl), 6.69-6.66 (m, 3H, CH of benzyl and imidazole), 6.54 (d, J = 1.9 Hz, 1H, CH of imidazole), 5.62-5.20 (m, 2H, CH₂ of benzyl), 4.81-4.80 (m, 2H, CH of COD), 3.82-3.80 (m, 5H, CH₃ of imidazole and CH of COD), 2.74-2.64 (m, 4H, CH₂ of COD), 2.37-2.27 (m, 2H, CH₂ of COD), 2.19-2.11 (m, 2H, CH₂ of COD). ¹³C NMR (300 MHz, CDCl₃) $\delta_{\rm C}$ 170.8 (NCN of imidazole), 170.2 (CO of pdc), 149.7 (*C*CH of pdc), 137.8 (*C*CH of benzyl), 135.7 (CH of pdc), 128.5 (CH of benzyl), 127.2 (CH of benzyl), 126.8 (CH of pdc), 126.2 (CH of benzyl), 125.3 (CH of imidazole) 123.5 (CH of imidazole), 117.5 (CH of COD), 86.5 (CH of COD), 53.2 (CH₂ of benzyl), 40.0 (CH₃ of imidazole), 31.6 (CH₂ of COD), 27.4 (CH₂ of COD). HR-MS (ESI) m/z 548.1398 calcd 546.5890 (M*+2H). Elemental Analysis: calcd (**C4**.H₂O): C, 55.31; H, 5.18; N, 7.44; found: C, 55.18, H, 4.90, N, 7.42.

C5. Yield: 30%. The sensitive nature of this complex in solution precluded the use of 13 C NMR spectroscopy as it degraded *in situ* over the time range required for a spectrum with a high signal-to-noise ratio. Similarly, mass spectrometry, CHN analysis, and cyclic voltammetry could not be utilised in this case. 1 H NMR (400 MHz, CDCl₃) δ_{H} 8.06-7.49 (m, 8H), 7.02 (s 1H, CH of imidazole), 6.73 (s, 1H, CH of imidazole), 4.43-4.41 (m, 2H, CH of COD), 3.58 (s, 3H, CH₃ of imidazole), 3.51-3.49 (m, 2H, CH of COD), 2.61-2.15 (m, 12H, CH₂ of COD and CH₂ ethyl).

C6. The ligand (0.24g, 1.5 eq) and Ag₂O (0.13g, 1 eq) were stirred in DCM (10 mL) at 45 °C under an argon atmosphere in a Schlenk tube for 1 h. Complex **C1** (0.23, 1 eq) was added to the mixture and allowed to stir overnight. The reaction mixture was filtered. The product was purified by gravity silica gel column chromatography using a mixture of ethyl acetate/acetone as eluent (1:4). Yield: 38%. 1 H NMR (400 MHz, CDCl₃) δ_{H} 8.11-7.80 (m, 3H, CH of pdc and 2H of benzyl), 7.85-7.76 (m, 2H, CH of pdc), 6.79-6.76 (m, 2H, CH of benzyl and 1H, CH of imidazole), 6.57-6.56 (d, J = 1.6 Hz, 1H, CH of imidazole), 6.01 (m, 1H, CH₂ of benzyl), 5.32 (m, CH₂ of benzyl), 4.76-4.71 (m, 2H, CH of COD), 3.86-3.68 (m, 5H, CH₃ of imidazole and CH of COD), 2.74-2.50 (m, 4H, CH₂ of COD), 2.40-2.07 (m, 4H, CH₂ of COD). 13 C NMR (300 MHz, CDCl₃) δ_{C} 171.9 (CO of pdc), 170.8 (NCN of imidazole), 149.9 (*C*CH of pdc), 147.5 (*C*CH of benzyl), 136.0 (CH of pdc), 127.0 (CH of pdc), 126.8 (CH of benzyl), 126.2 (CH of imidazole), 123.8 (CH of benzyl), 125.3 (CH of imidazole) 123.5 (CH of imidazole), 117.9 (CH of COD), 86.6 (CH of COD), 52.8 (CH₂ of benzyl), 40.3 (CH₃ of imidazole), 31.7 (CH₂ of COD), 27.5 (CH₂ of COD). HR-MS (ESI) m/z 593.0369 calcd 591.5900 (M*+H). Elemental Analysis: calcd (**C6**.0.5H₂O): C, 52.00, H, 4.53, N, 9.33; found: C, 52.15, H, 4.31, N, 8.98.

C7. The ligand (0.14g, 1.5 eq) and Ag₂O (0.08g, 1 eq) were stirred in DCM (10 mL) at 42 °C under an argon atmosphere in a Schlenk tube for 1 h. Complex C1 (0.13, 1 eq) was added to the mixture and allowed to stir overnight. The reaction mixture was filtered. The product was purified by gravity silica gel column chromatography with a mixture of acetone/ethyl acetate as eluent. Yield: 61%. 1 H NMR (300 MHz, CDCl₃) δ_{H} 8.17-7.99 (d, J = 8.7 Hz, 2H, CH of pdc), 7.87-7.70 (m, 3H, CH of pdc and benzyl), 7.31-7.21 (m, 4.6 Hz, 3H, CH of benzyl), 6.88 (d, J = 8Hz, 2H, CH of benzyl), 6.81-6.70 (m, 1H, CH of benzyl), 6.69-6.62 (m, 1H, CH of imidazole), 6.61-6.60 (d, J = 3Hz, 1H, CH of imidazole), 6.04 (d, J = 12.6Hz, 1H, CH₂ of benzyl), 5.72-5.45 (m, 3H, CH₂ of benzyl), 4.95-4.79 (m, 2H, CH of COD), 3.80-3.74 (m, 2H, CH of COD), 2.73-2.71 (m, 2H, CH₂ of COD), 2.58 (m, 2H, CH₂ of COD), 2.38-2.29 (m, 4H, CH₂ of COD). ¹³C NMR (300 MHz, CDCl₃) δ_C 172.4 (CO of pdc), 170.7 (NCN of imidazole), 147.2 (CCH of pdc), 145.3 (CCH of benzyl), 137.5 (CCH of benzyl), 135.8 (CH of pdc), 128.8 (CH of benzyl), 127.6 (CH of pdc), 126.8 (CH of benzyl), 126.5 (CH of benzyl), 125.0 (CH of benzyl), 124.2 (CH of imidazole), 123.8 (CH of imidazole), 117.9 (CH of COD), 86.7 (CH of COD), 53.8 (CH₂ of benzyl), 53.0 (CH₂ of benzyl), 31.6(CH₂ of COD), 28.0-27.5 (4H, CH₂ of COD) . HR-MS (ESI) m/z 669.1622 calcd 667.6840 (M⁺+2H). Elemental Analysis: calcd (C7.0.3CH₂Cl₂): C, 55.97; H, 4.45; N, 8.08; found: C, 55.74, H, 4.23, N, 7.99.

C8. The ligand (0.31g, 1.5 eq) and Ag_2O (0.12g, 1 eq) were stirred in DCM (10 mL) at 45 °C under an argon atmosphere in a Schlenk tube for 1 h. Complex C1 (0.21g, 1 eq) was added to the mixture and allowed to stir overnight. The reaction mixture was filtered. The product was purified by gravity silica gel column chromatography a mixture of acetone/ethyl acetate as eluent. Yield: 25%. 1 H NMR (400 MHz, CDCl₃) δ_{H} 8.13-7.74 (m, 6H, CH of pdc and phenyl), 7.50-6.91 (m, 8H, CH of pdc and phenyl), 6.73-6.70 (m, 3H, CH of phenyl and imidazole), 6.53 (d, J = 1.9 Hz, 1H, CH of imidazole), 6.10-5.94 (m, 1H, CH_2), 5.60-5.30 (m, 1H, CH_2), 4.90-4.60 (m, 3H, CH of COD and CH₂ of ethyl), 4.35 (m, 1H, CH₂ of ethyl), 3.83-3.70 (m, 2H, CH of COD), 3.21-3.18 (m, 1H, CH₂ of ethyl), 2.80-2.11 (m, 9H, CH₂ of COD and ethyl). ¹³C NMR (300 MHz, CDCl₃) $\delta_{\rm C}$ 171.3 (CO of pdc), 170.7 (NCN of imidazole), 149.6 (CCH of pdc), 147.1 (CCH of benzyl), 145.5 (CCH of benzyl), 137.8 (CCH of benzyl), 135.9 (CH of pdc), 129.1 (CH of benzyl), 128.7 (CH of benzyl), 127.2 (CH of pdc), 127.0 (CH of benzyl), 126.9 (CH of benzyl), 126.9 (CH of imidazole), 126.6 (CH of benzyl), 124.9 -123.7 (CH of benzyl and imidazole), 118.2-117.8 (CH of COD), 86.7 (CH of COD), 52.9 (CH₂ of benzyl), 52.0 (CH₂ of ethylbn) 38.3 (CH₂ of ethylbn), 31.8-31.4 (CH₂ of COD), 27.4 (CH₂ of COD. HR-MS (ESI) m/z 683.1798 calcd 681.7110 (M+2H). Elemental Analysis: calcd (C8.0.5H₂O): C, 57.38; H, 4.82; N, 8.11; found: C, 56.88, H, 4.37, N, 8.24.

- **C9.** The ligand (0.14g, 1.5 eq) and Ag₂O (0.08g, 1 eq) were stirred in DCM (10 mL) at 42 °C under an argon atmosphere in a Schlenk tube for 1 h. Complex **C1** (0.13, 1 eq) was added to the mixture and allowed to stir overnight. The reaction mixture was filtered. The product was purified by gravity silica gel column chromatography with a mixture of acetone/ethyl acetate as eluent. Yield: 8%. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 8.08-8.05 (d, J = 8 Hz, 4H, CH of benzyl), 7.81-7.78 (m, 3H, CH of pdc), 6.92 (d, J = 8 Hz, 4H, CH of benzyl), 6.71 (s, 2H, CH of imidazole), 6.05 (d, J = 17.4 Hz, 2H, CH₂ of benzyl), 5.53 (d, J = 17.0 Hz, 2H, CH₂ of benzyl), 4.77 (m, 2H, CH of COD), 3.73 (m, 2H, CH of COD), 2.74-2.10 (m, 8H, CH₂ of COD). ¹³C NMR (300 MHz, CDCl₃) $\delta_{\rm C}$ 173.4 (NCN of imidazole), 170.6 (CO of pdc), 149.6 (*C*CH of pdc), 147.4 (*C*CH of benzyl), 144.9 (*C*CH of benzyl), 136.1 (CH of pdc), 127.0 (CH of pdc) 127.0 (CH of benzyl), 124.9 (CH of imidazole), 124.0 (CH of benzyl), 118.2 (CH of COD), 86.7 (CH of COD), 53.2 (CH₂ of benzyl), 31.6 (CH₂ of COD), 27.4 (CH₂ of COD). HR-MS (ESI) m/z 714.1472 calcd 712.6810 (M*+2H). Elemental Analysis: calcd (**C9**): *C*, 53.93; H, 4.10; N, 9.83; found: *C*, 54.01, H, 4.01, N, 9.53.
- C10. The imidazolium ligand (0.16g, 2eq) and Ag_2O (0.12g, 1eq) were stirred in DMF at $90^{\circ}C$ under an argon atmosphere in a Schlenk tube for 1 h. C1 (0.20, 1 eq) was added to the mixture and allowed to stir overnight. The crude was filtered through silica; methanol was added and concentrated under vacuo. The product was recrystallised with diethyl ether/DMF-MeOH. The product was then washed with ethyl acetate. Yield: 69%. 1H NMR (300 MHz, MeOD) δ_H 8.30-8.27 (m, 2H, CH of pdc), 8.14-8.11 (m, 1H, CH of pdc), 7.35 (s, 1H, CH of imidazole), 6.76 (s, 1H, CH of imidazole), 4.80-4.40 (m, 3H, CH and CH₂ of alkenyl tether), 4.19-3.69 (m, 5H, CH and CH₂ of alkenyl tether), 2.10 (s, 3H CH₃ of alkenyl tether), 1.27 (s, 3H, CH₃ of alkenyl tether). ^{13}C NMR (75 MHz, MeOD) δ_C 175.8 (NCN of imidazole), 174.1 (CO of pdc), 153.3 (*C*CH of pdc), 151.3 (*C*CH of pdc) 143.0 (*C*=CH₂ of alkenyl tether), 138.2 (CH of pdc), 128.9 (CH of pdc), 128.5 (CH of pdc), 124.6 (CH of imidazole), 121.4 (CH of imidazole), 110.8 (=CH₂ of alkenyl tether), 94.9 (-CCH₂ of imidazole), 65.3 (=CH₂ of alkenyl tether), 55.3 (CH₂ of alkenyl tether), 54.0 (CH₂ of alkenyl tether), 22.2 (CH₃ of imidazole), 19.8 (CH₃ of imidazole). HR-MS (ESI) m/z 462.9854 calcd 460.4500 (M+2H). Elemental Analysis: calcd (**C10.**0.5CHCl₃): C, 42.72, H, 4.17, N, 8.08; found: C, 42.93, H, 4.22, N, 7.72.
- **C11.** The imidazolium ligand (0.20g, 2eq) and Ag_2O (0.13g, 1eq) were stirred in DMF at 120°C under an argon atmosphere in a Schlenk tube for 1 h. Complex [Ru(pdc)(COD)(N-methylimidazole)] (0.25, 1 eq) was added to the mixture and allowed to stir for about 2 days. Diethyl ether was added to the reaction mixture and was purified column chromatography using acetone as eluent. Yield: 13%. 1H NMR (300 MHz, CDCl₃) δ_H 8.12-8.09 (m, 2H, CH of pdc),

7.90-7.86 (m, 1H, CH of pdc), 7.09 (s, 1H, CH of methylimidazole), 6.95 (d, J = 1.9 Hz, 1H, CH of methylimidazole), 6.61-6.59 (m, 2H, CH of alkenyl tether), 6.44 (d, J = 1.9 Hz, 1H, CH of methylimidazole), 4.59 (d, J = 9 Hz, 1H, CH $_2$ of alkene), 4.21 (d, J = 9 Hz, 1H, CH $_2$ of alkene), 3.80 (d, J = 5 Hz, 2H, CH $_2$ of alkenyl tether), 3.53 (s, 3H, CH $_3$ of methylimidazole), 2.86 (s, 3H, CH $_3$ of imidazole), 1.70 (s, 3H, CH $_3$ of alkenyl tether). ¹³C NMR (400 MHz, CDCl $_3$) δ_C 181.0 (NCN of imidazole), 172.1 (CO of pdc), 150.8 (*C*CH of pdc), 149.9 (*C*CH of pdc), 137.3 (CH of imidazole), 134.9, 127.9 (CH of pdc), 127.1 (CH of pdc), 126.7 (CH of imidazole), 122.8 (CH of imidazole), 120.4 (CH of imidazole), 118.7 (CH of imidazole), 91.1 (-CCH $_2$ of alkenyl tether), 65.4 (CH $_2$ of alkene), 55.0 (CH $_2$ of alkenyl tether), 34.9 (CH $_3$ of methylimidazole), 34.2 (CH $_3$ of alkenyl tether), 22.4 (CH $_3$ of alkenyl tether). HR-MS (ESI) m/z 485.0881 calcd 484.4780 (M*+1H). Elemental Analysis: calcd (**C11**.CH $_2$ Cl $_2$) C, 42.19, H, 4.07, N, 12.30 found; C, 42.08, H, 4.28, N, 12.15.

C12. The imidazolium ligand (0.16g, 2eq) and Ag_2O (0.11g, 1eq) were stirred in DMF at 120°C under an argon atmosphere in a Schlenk tube for 1 h. Complex [Ru(pdc)(COD)(4phenylpyridine)] (0.25, 1 eq) was added to the mixture and allowed to stir for about 2 days.Diethyl ether was added and the crude was washed with diethyle ether. Further purification was done by solvent wash using water, followed by diethyl ether and ethyl acetate. The product was also redissolved using DCM, filtered and concentrated under vacuo. Yield: 61%. 1 H NMR (400 MHz, CDCl₃) δ_{H} 8.15-8.05 (m, 4H, CH of pdc and CH of 4-Phpy), 7.92 (t, J = 7.7 Hz, 1H, CH of pdc), 7.52-7.35 (m, 7H, CH of 4-Phpy), 6.98 (d, J = 1.9 Hz, 1H, CH of 1.9 of J = 1.9 of J = 1.9 of J = 1.9 of J = 1imidazole), 6.48 (d, J = 1.9 Hz, 1H, CH of imidazole), 4.60 (d, J = 12.4 Hz, 1H, =CH₂ of alkenyl tether), 4.24 (d, J = 12.4 Hz, 1H, =CH₂ of alkenyl tether), 3.85 (d, J = 44.4 Hz, 2H, CH₂ of alkenyl tether), 2.88 (s, 3H, CH₃ of imidazole), 1.65 (s, 3H, CH₃ of alkenyl tether). ¹³C NMR (300 MHz, CDCl₃) δ 179.2 (NCN of imidazole), 172.0 (CO of pdc), 150.5 (CCH of 4-Phpy), 150.2 (CCH of pdc), 149.7 (CCH of 4-Phpy), 148.8 (CH of 4-Phpy), 136.4 (CH of pdc), 135.5 (CH of 4-Phpy), 129.8 (CH of 4-Phpy), 129.3 (CH of 4-Phpy), 127.4 (CH of pdc), 126.9 (CH of 4-Phpy), 123.2 (CH of imidazole), 122.3 (CH of 4-Phpy), 119.0 (CH of imidazole), 91.3 (-CCH₂ of imidazole), 65.7 (CH₂ of alkenyl tether), 54.8 (=CH₂ of alkenyl tether), 35.0 (CH₃ of imidazole), 22.5 (CH₃ of alkenyl tether). HR-MS (ESI) m/z 559.1176 calcd 557.5720 (M*+2H). Elemental Analysis: calcd (C12.CH₂Cl₂) C, 50.47, H, 4.08, N, 8.72; found; C, 50.51, H, 3.78, N, 9.33.

2. NMR spectra of complexes **C2-C12** (Figures S1-S20)

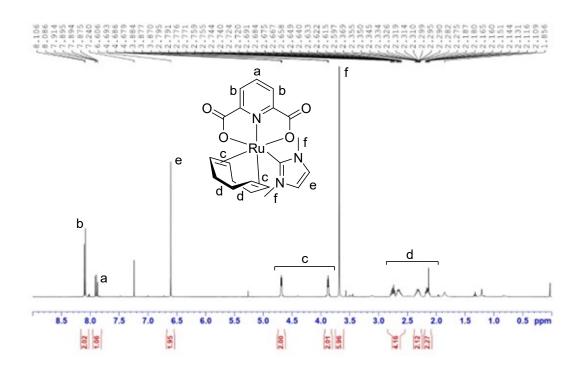


Figure S1 C2: ¹H NMR spectrum

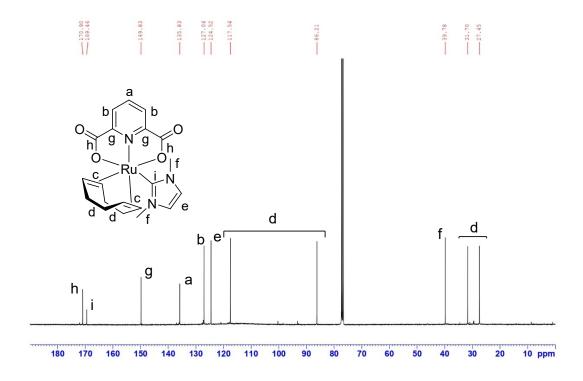


Figure S2 C2: ¹³C NMR spectrum

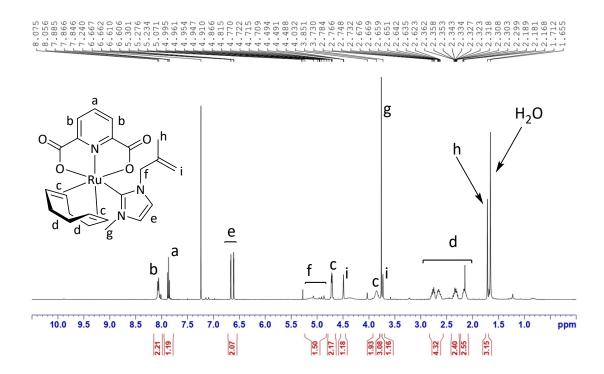


Figure S3 C3: ¹H NMR spectrum

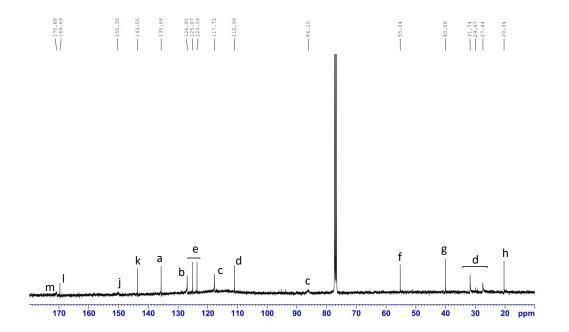


Figure S4 C3: ¹³C NMR spectrum

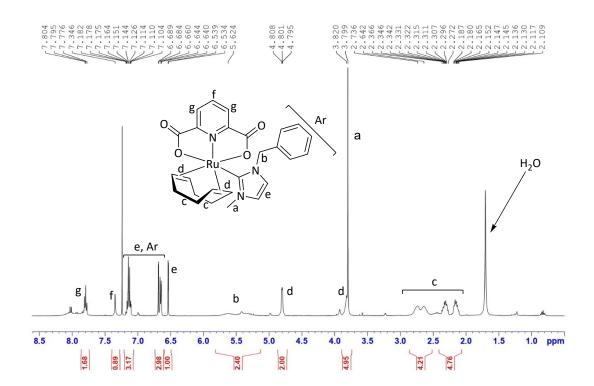


Figure S5 C4: ¹H NMR spectrum

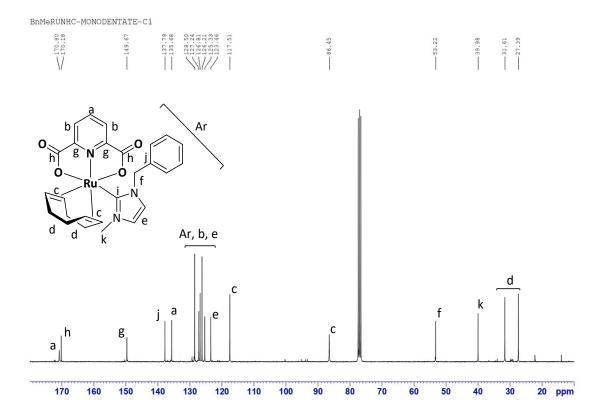


Figure S6 C4: ¹³C NMR spectrum

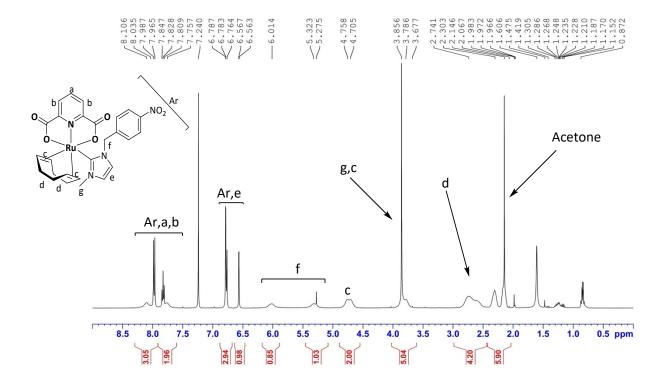


Figure S7 C6: ¹H NMR spectrum

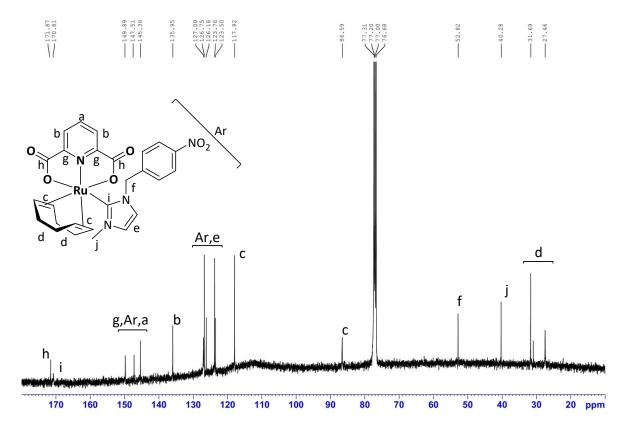


Figure S8 C6: 13 C NMR spectrum

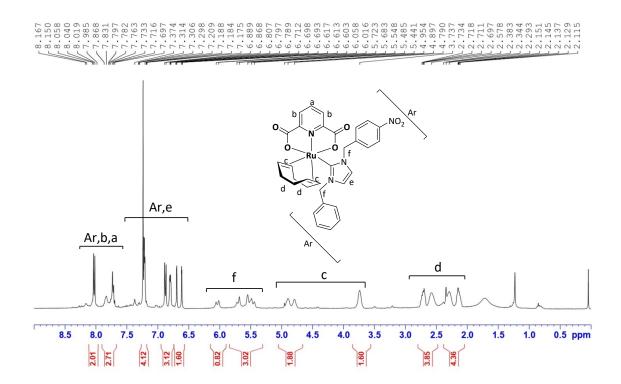


Figure S9 C7: ¹H NMR spectrum

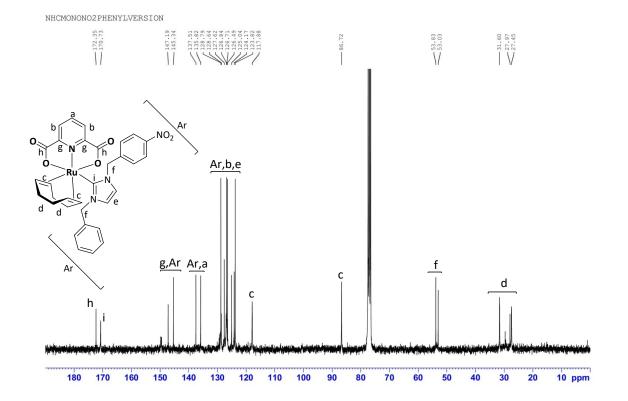


Figure \$10 C7: ¹³C NMR spectrum

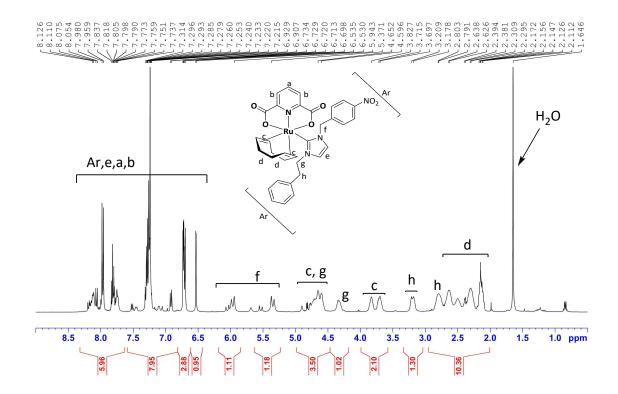


Figure S11 C8: ¹H NMR spectrum

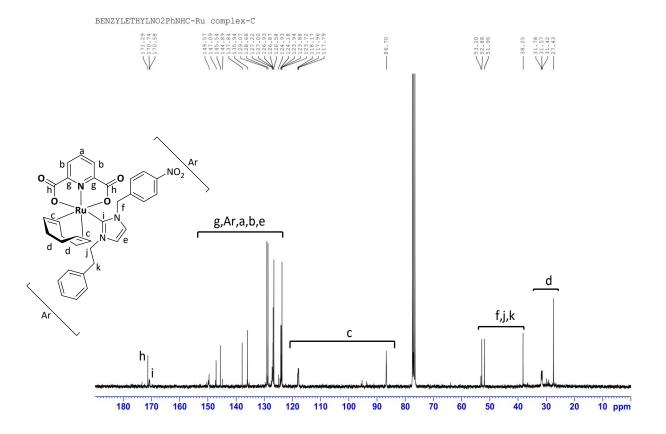


Figure \$12 C8: ¹³C NMR spectrum

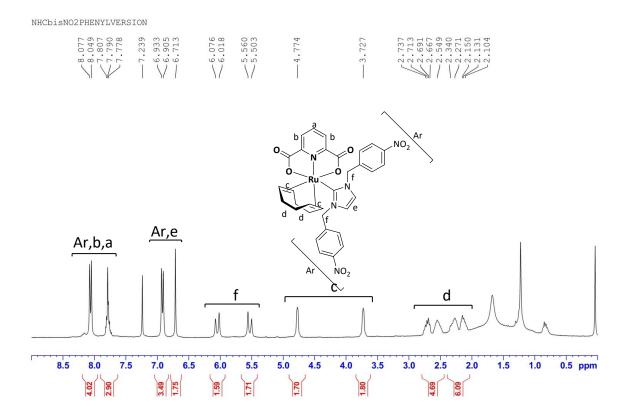


Figure \$13 C9: ¹H NMR spectrum

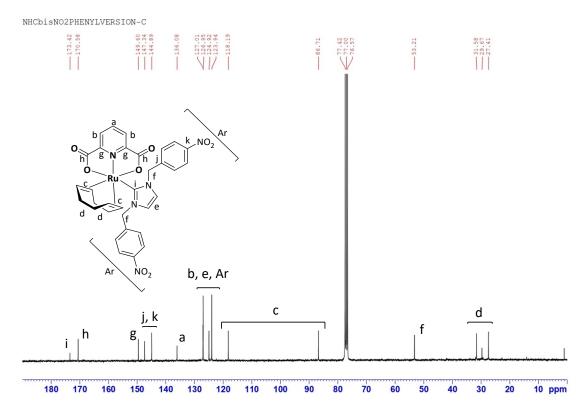


Figure \$14 C9: ¹³C NMR spectrum

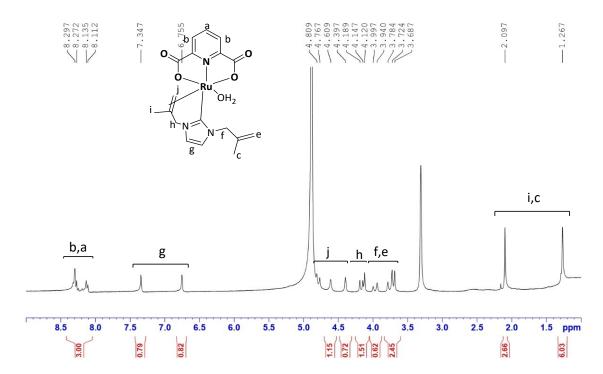


Figure S15 C10: ¹H NIVIK spectrum

bidendate-bispropylmethyl-aqua-Ru-complexMEODTRIAL3C

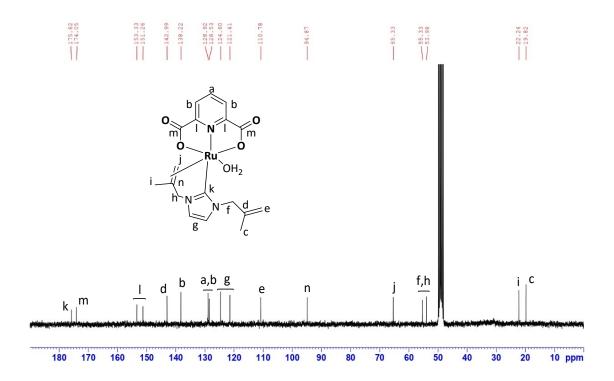


Figure S16 C10: ¹³C NMR spectrum

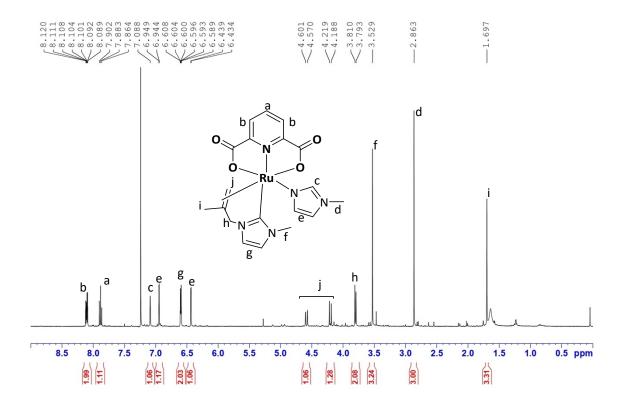


Figure S17 C11: ¹H NMR spectrum

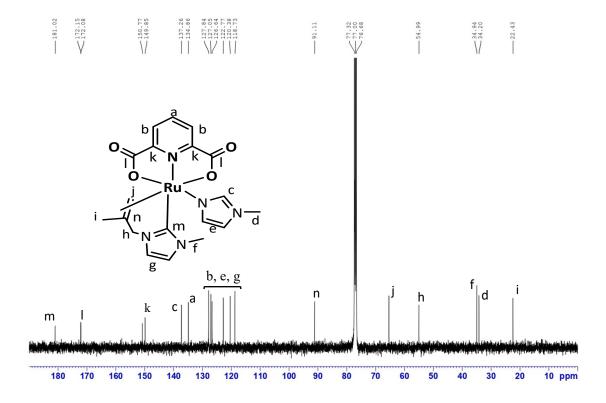


Figure \$18 C11: 13C NMR spectrum

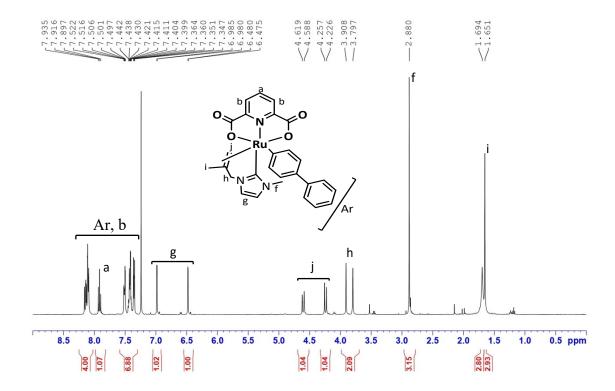


Figure \$19 C12: ¹H NMR spectrum

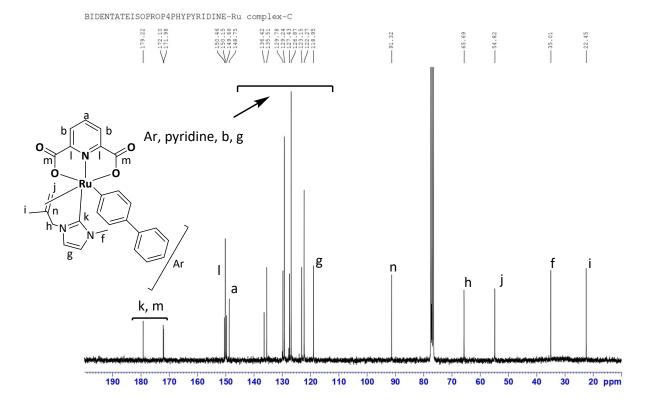


Figure S20 C12: ¹³C NMR spectrum

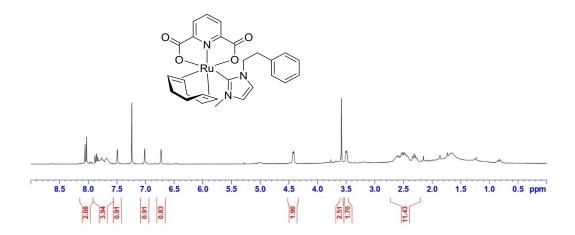


Figure S21 C5: ¹H NMR spectrum

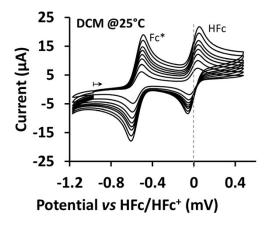
3. Crystallographic details of **C2-C6**, **C8-C12** (Tables S1-S3)

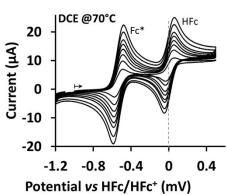
Table S1: Crystallographic parameters for NHC Complexes.

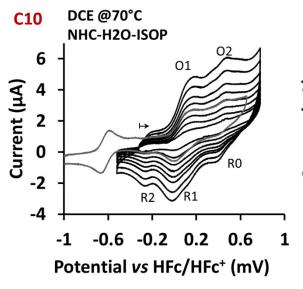
Description	C2	С3	C4	C5	C6
Empirical formula	C ₂₀ H ₂₅ N ₃ O ₅ Ru	C ₄₆ H ₅₃ N ₆ O ₈ Ru ₂	C ₂₆ H ₂₇ N ₃ O ₄ Ru	C ₂₇ H ₂₉ N ₃ O ₄ Ru	C ₂₆ H ₂₆ N ₄ O ₆ Ru
Formula weight	488.50	1020.08	546.58	560.60	591.58
Temperature (K)	149.99(10)	149.99(10)	149.99(10) 150.00(10)		150.00(10)
Crystal system	orthorhombic	monoclinic	orthorhombic	monoclinic	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁	C2/m	Pca2 ₁	P2 ₁ /c	Pca2 ₁
a (Å)	7.82300(10)	13.30480(10)	17.24420(10)	17.23840(10)	12.99141(15)
b (Å)	15.2957(2)	13.5619(2)	12.15900(10)	14.09470(10)	14.05629(16)
c (Å)	16.3651(2)	12.14960(10)	22.0006(2)	9.53400(10)	12.95619(16)
α (°)	90	90	90	90	90
β (°)	90	96.6700(10)	90	93.4940(10)	90
γ (°)	90	90	90	90	90
Volume (ų)	1958.22(4)	2177.42(4)	4612.92(6)	2312.17(3)	2365.94(5)
Z	4	2	8	4	4
ρ _{calc} g (cm³)	1.657	1.556	1.574	1.610	1.661
μ (mm ⁻¹)	6.813	6.121	5.825	5.827	5.811
F(000)	1000.0	1046.0	2240.0	1152.0	1220.0
Radiation (λ, Å)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)
Reflections collected	23077	23298	50019	49229	31519
Independent reflections	3988	2421	9577	4891	4799
R _{int}	0.0413	0.0381	0.0419	0.0312	0.0483
Data/restraints/parameters	3988/0/268	2421/30/192	9577/1/616	4891/0/318	4799/1/335
Goodness-of-fit on F ²	1.113	1.139	1.124	1.099	1.156
Final R indexes [all data]	$R_1 = 0.0253,$ $wR_2 = 0.0628$	$R_1 = 0.0367,$ $wR_2 = 0.0799$	$R_1 = 0.0324,$ $wR_2 = 0.0794$	$R_1 = 0.0276,$ $wR_2 = 0.0719$	$R_1 = 0.0415,$ $WR_2 = 0.1186$
Largest diff. peak/hole (e Å-3)	0.43/-0.92	0.84/-1.15	0.55/-0.59	0.56/-0.82	0.55/-1.00

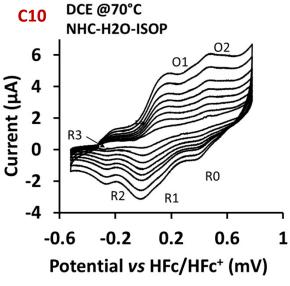
Description	C8	С9	C10	C11	C12
Empirical formula	C ₃₅ H ₃₄ N ₄ O ₆ Cl ₆ Ru	C ₁₃₆ H _{136.2} Cl _{17.37} N ₂₀ O _{35.2} Ru ₄	C ₁₈ H ₂₁ N ₃ O ₅ Ru	C ₁₉ H ₂₅ N ₅ O ₆ Ru	C ₂₆ H ₂₄ N ₄ O ₄ Ru
Formula weight	920.43	3634.17	460.45	520.51	557.56
Temperature (K)	149.99(10)	149.98(10)	150.00(2)	149.99(10)	149.99(10)
Crystal system	triclinic	monoclinic	triclinic	triclinic	orthorhombic
Space group	P-1	P2₁/n	P-1	P-1	P2 ₁ 2 ₁ 2 ₁
a (Å)	9.9781(2)	9.9817(5)	9.7789(8)	8.2408(2)	12.9825(3)
b (Å)	12.8763(2)	14.0691(8)	10.0997(9)	10.3384(3)	13.1403(2)
c (Å)	15.9233(3)	26.5049(15)	10.8427(9)	14.7449(4)	13.4427(3)
α (°)	81.329(2)	90	74.531(3)	109.197(2)	90
β (°)	75.973(2)	93.040(4)	64.202(3)	91.635(2)	90
γ (°)	72.202(2)	90	79.030(3)	112.158(2)	90
Volume (ų)	1883.32(7)	3716.9(4) 925.81(14)		1081.90(5)	2293.24(8)
Z	2	1	2	2	4
ρcalcg (cm³)	1.623	1.624	1.652	1.598	1.615
μ (mm ⁻¹)	0.893	6.803	0.882	0.770	0.726
F(000)	932.0	1845.0	468.0	532.0	1136.0
Radiation (λ, Å) ΜοΚα (λ = 0.71073)		CuKα (λ = 1.54184)	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)
Reflections collected	45900	21596	41333	23445	38524
Independent reflections	9100	7101	3832 5671		6431
R _{int}	0.0334	0.0772	0.1304 0.0381		0.0499
Data/restraints/parameters	9100/438/637	7101/3/512	3832/0/259	5671/0/305	6431/0/318
Goodness-of-fit on F ²	s-of-fit on F ² 1.047		1.061	1.061	1.024
Final R indexes [all data]	Final R indexes [all data] $R_1 = 0.0287, WR_2 = 0.0758$		$R_1 = 0.0437,$ $wR_2 = 0.1030$	$R_1 = 0.0322,$ $wR_2 = 0.0804$	R1 = 0.0299, wR2 = 0.0713
Largest diff. peak/hole (e Å ⁻ ³)	0.61/-0.56	1.76/-1.54	0.77/-0.81	1.10/-0.96	1.08/-0.52

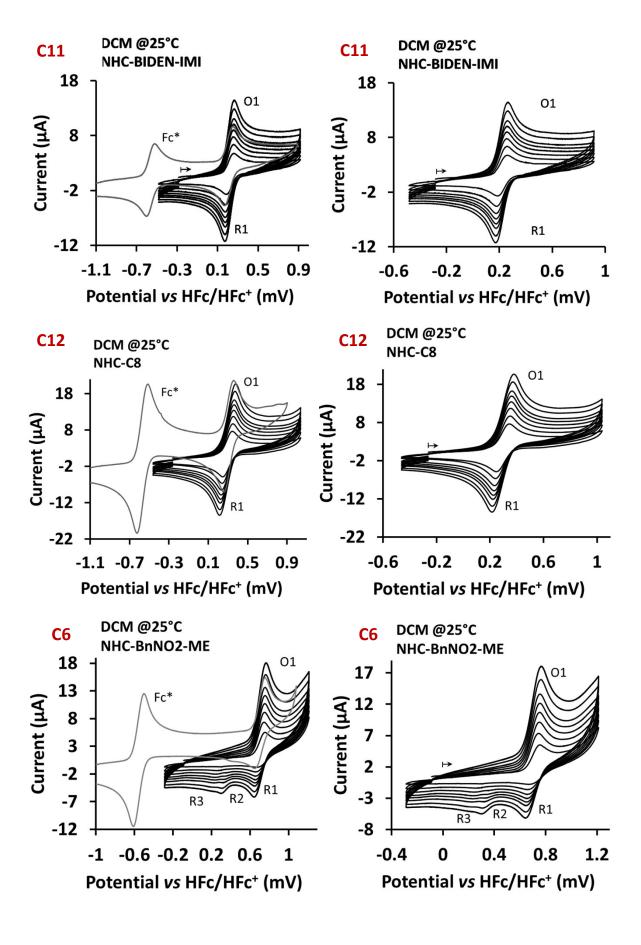
Table S2: Bond lengths (SC-XRD) for 2-6, 8-12.

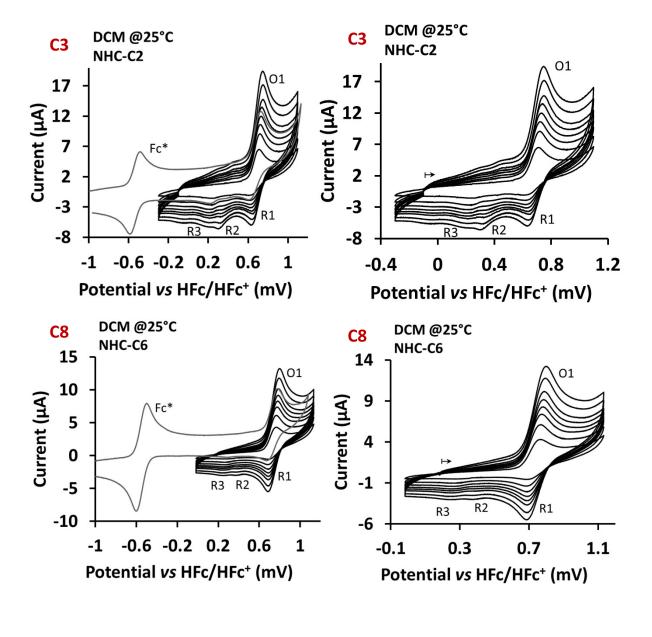

C2		C3		C4		C5		C6	
Atoms	Length (Å)	Atoms	Length (Å)	Atoms	Length (Å)	Atoms	Length (Å)	Atoms	Length (Å)
Ru1-O1	2.124(3)	Ru1-O1	2.123(2)	Ru1-O1	2.113(4)	Ru1-O1	2.0991(15)	Ru1-O1	2.113(4)
Ru1-O3	2.127(3)	Ru1-O1'	2.123(2)	Ru1-O3	2.123(4)	Ru1-O3	2.1394(15)	Ru1-O3	2.128(3)
Ru1-N1	2.021(3)	Ru1-N1	2.022(4)	Ru1-N1	2.013(5)	Ru1-N1	2.0124(18)	Ru1-N1	2.019(5)
Ru1-C8	2.116(4)	Ru1-C5	2.104(5)	Ru1-C8	2.126(6)	Ru1-C8	2.124(2)	Ru1-C8	2.110(6)
Ru1-C13	2.190(4)	Ru1-C11	2.187(3)	Ru1-C19	2.332(6)	Ru1-C20	2.175(2)	Ru1-C19	2.181(5)
Ru1-C14	2.206(4)	Ru1-C11'	2.187(3)	Ru1-C20	2.312(6)	Ru1-C21	2.194(2)	Ru1-C20	2.179(5)
Ru1-C17	2.320(4)	Ru1-C14	2.313(3)	Ru1-C23	2.194(6)	Ru1-C24	2.337(2)	Ru1-C23	2.308(6)
Ru1-C18	2.343(5)	Ru1-C14'	2.313(3)	Ru1-C24	2.177(7)	Ru1-C25	2.324(2)	Ru1-C24	2.321(6)
	C8	(. 9	C10		C11		C12	
Atoms	Length (Å)	Atoms	Length (Å)	Atoms	Length (Å)	Atoms	Length (Å)	Atoms	Length (Å)
Ru1-O1	2.1332(12)	Ru1-O1	2.141(7)	Ru1-O1	2.102(3)	Ru1-O1	2.1075(15)	Ru1-01	2.121(2)
Ru1-O3	2.1325(12)	Ru1-O3	2.081(7)	Ru1-O3	2.131(3)	Ru1-O3	2.1324(16)	Ru1-O3	2.116(2)
Ru1-N1	2.0173(15)	Ru1-N1	2.003(9)	Ru1-05	2.199(3)	Ru1-N4	2.1630(17)	Ru1-N4	2.169(3)
Ru1-C8	2.1185(16)	Ru1-C8	2.161(10)	Ru1-N1	2.008(3)	Ru1-N1	1.9977(18)	Ru1-N1	2.007(3)
Ru1-C26	2.1849(18)	Ru1-C25	2.175(10)	Ru1-C8	1.974(4)	Ru1-C8	2.012(2)	Ru1-C8	2.022(3)
Ru1-C27	2.2095(17)	Ru1-C26	2.161(10)	Ru1-C13	2.153(4)	Ru1-C13	2.182(2)	Ru1-C13	2.201(4)
Ru1-C30	2.3075(17)	Ru1-C29	2.341(9)	Ru1-C12	2.193(4)	Ru1-C14	2.157(2)	Ru1-C14	2.163(3)
Ru1-C31	2.3182(17)	Ru1-C30	2.308(9)	C12-C13	1.398(6)	C13-C14	1.392(4)	C12-C13	1.405(5)

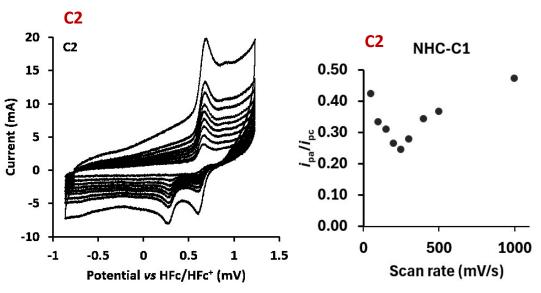

Table S3: Bond angles (SC-XRD) for 2-6, 8-12.

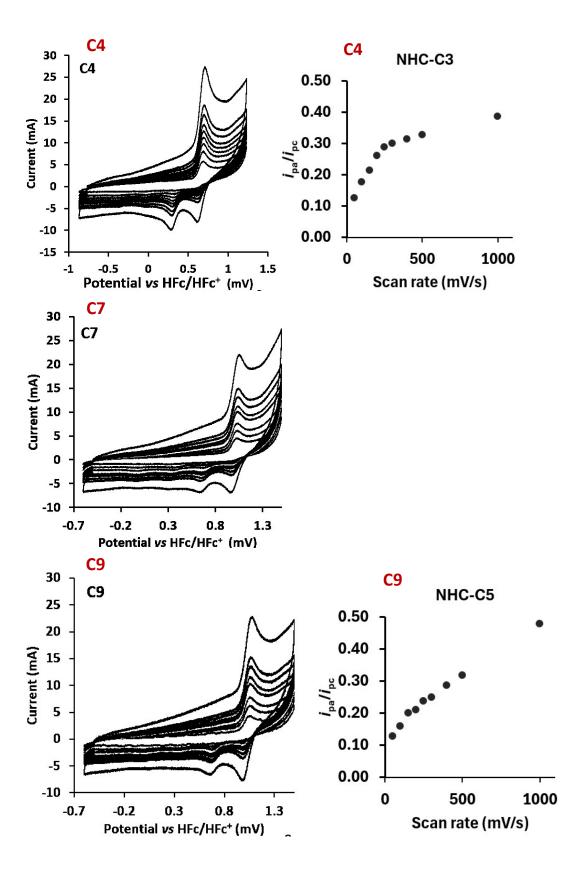

C2		СЗ		C4		C5		C6	
Atoms	Angle (°)	Atoms	Angle (°)	Atoms	Angle (°)	Atoms	Angle (°)	Atoms	Angle (°)
O3-Ru1-C13	122.95(15)	O1-Ru1-C11	121.78(11)	O3-Ru1-C23	119.3(2)	O3-Ru1-C21	89.23(7)	O3-Ru1-C19	121.31(19)
N1-Ru1-C18	95.37(15)	N1-Ru1-C11	161.27(9)	N1-Ru1-C19	93.1(2)	N1-Ru1-C24	95.57(8)	N1-Ru1-C19	161.8(2)
O3-Ru1-C8	88.26(14)	O1-Ru1-C5	89.94(7)	O3-Ru1-C8	94.4(2)	O3-Ru1-C8	87.02(7)	O3-Ru1-C8	91.6(2)
O3-Ru1-C17	75.56(14)	O1-Ru1-C14	107.70(11)	O3-Ru1-C19	75.4(2)	O3-Ru1-C24	76.78(7)	O3-Ru1-C20	84.32(19)
N1-Ru1-C8	95.88(15)	N1-Ru1-C5	92.33(15)	N1-Ru1-C8	96.3(2)	N1-Ru1-C8	92.36(8)	N1-Ru1-C8	94.9(2)
O1-Ru1-C8	92.67(14)	O1-Ru1-C8	89.94(7)	O1-Ru1-C8	85.8(2)	O1-Ru1-C8	90.46(7)	O1-Ru1-C8	90.1(2)
C17-Ru1-C18	34.01(16)	C11-Ru1-C11'	37.15(18)	C19-Ru1-C20	33.9(3)	C24-Ru1-C25	34.10(8)	C19-Ru1-C20	37.3(2)
C8-Ru1-C14	88.57(16)	O1-Ru1-C11'	84.62(11)	C8-Ru1-C24	87.8(2)	C8-Ru1-C21	89.37(8)	C8-Ru1-C24	159.1(2)
O3-Ru1-C14	86.31(18)	O1-Ru1-C11	121.78(11)	O3-Ru1-C24	82.5(2)	O3-Ru1-C25	107.26(7)	O3-Ru1-C24	108.5(2)
N1-Ru1-O3	76.81(13)	N1-Ru1-O1	76.81(6)	N1-Ru1-O3	76.61(18)	N1-Ru1-O3	76.13(7)	N1-Ru1-O3	76.92(18)
N1-Ru1-O1	76.21(13)	N1-Ru1-O1'	76.82(6)	N1-Ru1-O1	77.0(2)	N1-Ru1-O1	77.86(7)	N1-Ru1-O1	76.80(18)
O1-Ru1-O3	152.96(12)	O1-Ru1-O1'	153.60(12)	O1-Ru1-O3	153.44(18)	O1-Ru1-O3	153.73(6)	O1-Ru1-O3	153.72(14)
C8	}	C9		C10		C11		C12	
O3-Ru1-C27	88.17(6)	O3-Ru1-C26	85.3(4)	O3-Ru1-C12	122.76(13)	O3-Ru1-C13	122.37(8)	O3-Ru1-C14	122.05(12)
N1-Ru1-C30	90.60(6)	N1-Ru1-C25	161.5(4)	N1-Ru1-C12	159.89(14)	N1-Ru1-C13	160.16(9)	N1-Ru1-C13	161.52(11)
O3-Ru1-C8	87.09(6)	O3-Ru1-C8	92.7(4)	O3-Ru1-C8	95.45(14)	O3-Ru1-C8	96.57(7)	O3-Ru1-C8	87.23(11)
O1-Ru1-C31	74.59(6)	O3-Ru1-C25	121.3(4)	O3-Ru1-O5	87.15(12)	O3-Ru1-N4	88.69(6)	O3-Ru1-N4	91.20(10)
N1-Ru1-C8	96.74(6)	N1-Ru1-C8	94.3(4)	N1-Ru1-C8	99.18(15)	N1-Ru1-C8	94.73(8)	N1-Ru1-C8	96.59(12)
O1-Ru1-C8	93.64(6)	O1-Ru1-C26	121.4(4)	N1-Ru1-O5	87.13(13)	N1-Ru1-N4	88.90(7)	N1-Ru1-N4	90.10(10)
C26-Ru1-C27	36.98(7)	C26-Ru1-C25	36.3(4)	C12-Ru1-C13	37.51(16)	C13-Ru1-C14	37.42(10)	C13-Ru1-C14	37.55(14)
C8-Ru1-C27	89.19(6)	C8-Ru1-C26	88.5(4)	C8-Ru1-C12	79.90(16)	C8-Ru1-C13	80.52(8)	C8-Ru1-C13	79.16(14)
O3-Ru1-C26	124.76(6)	O3-Ru1-C29	74.9(4)	O3-Ru1-C13	85.35(13)	O3-Ru1-C14	85.14(8)	O3-Ru1-C13	84.64(11)
N1-Ru1-O3	76.70(5)	N1-Ru1-O3	76.5(3)	N1-Ru1-O3	77.36(12)	N1-Ru1-O3	77.17(7)	N1-Ru1-O3	77.16(9)
N1-Ru1-O1	76.37(5)	N1-Ru1-O1	77.0(3)	N1-Ru1-O1	77.26(12)	N1-Ru1-O1	77.50(7)	N1-Ru1-O1	77.29(10)
O1-Ru1-O3	152.96(5)	O3-Ru1-O1	153.4(3)	O3-Ru1-O1	154.49(11)	O3-Ru1-O1	154.62(6)	O3-Ru1-O1	154.44(9)

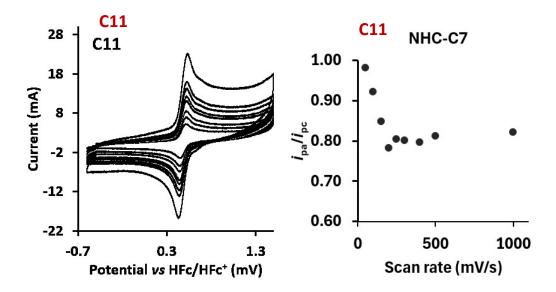

4. Electrochemical details (Figure S22)


DCM @ 25° C (150 mV/s) Fc* vs HFc = -0.553 V DCE @ 70° C (150 mV/s) Fc* vs HFc = -0.544 V

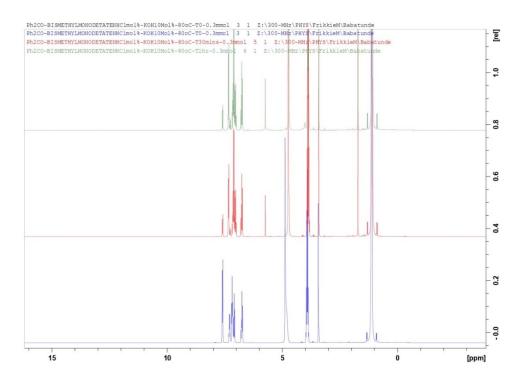




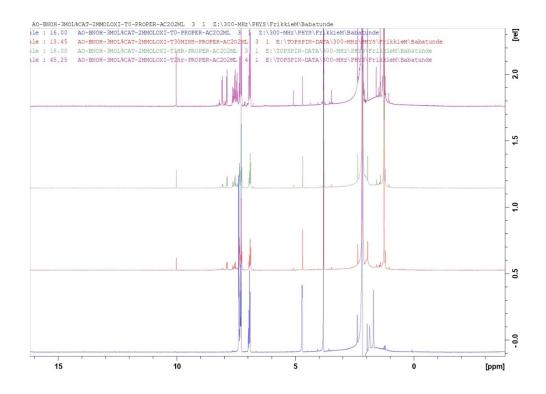




Additional discussion (Electrochemical analysis):


Complexes C10-C12 exhibit a chemically reversible Ru^{II}/Ru^{III} redox process (O1/R1) across all scan rates $(i_{pa}/i_{pc} = 1.0)$, occurring at increasingly positive potentials: 0.085 V (C10), 0.215 V (C11), and 0.288 V (C12). This trend contradicts expectations based on the electron-donating abilities of the ligands, which follow the order: aqua < imidazole-containing ligand < pyridine-containing ligand. Instead, the observed redox potential sequence (C10 < C11 < C12) suggests that factors beyond simple electron donation influence the redox behaviour of these carbene-containing Ru complexes. One key factor is the stabilisation of the Ru3+ state. The aqua ligand, through intermolecular hydrogen bonding and solvation effects (considering DCE was used instead of DCM), may lower the oxidation potential by stabilising the oxidised species. Additionally, proton-coupled electron transfer (PCET) in the aqua complex could further facilitate oxidation.⁵¹ In contrast, pyridine, a stronger donor, can also act as a π -acceptor, potentially destabilise Ru³⁺ and increasing the oxidation potential. Moreover, subtle structural reorganisations upon oxidation may play a role. The aqua complex may undergo favourable structural adjustments that ease oxidation,⁵² while the more rigid coordination of pyridine could resist such changes, making oxidation more challenging.^{53,54} These combined effects could potentially explain why the aqua complex exhibits the lowest oxidation potential, despite being the weakest donor, while pyridine, its electronic and structural influences, results in the highest oxidation potential.

5. Catalysis details (Table S4)


 Table S4: Alcohol Oxidation Optimization Process

Complex	Benzyl alcohol (mmol)	Oxidant (mmol)	кон	Solvent (mL)	Cat. (mol%)	Time (hr)	Conversion (%)	TOF (h ⁻¹)
C0	1	^t BuOOH: 2	-	Acet:2	2	0.5	94	94
C0	1	^t BuOOH: 2	-	Acet:2	2	1	89	45
C0	1	^t BuOOH: 2	-	Acet:2	2	2	79	20
C0	1	^t BuOOH: 2	-	Acet:2	3	1	71	24
C0	1	^t BuOOH: 2	-	Acet:2	3	2	90	15
C0	1	H ₂ O ₂ : 2	-	Acet:2	3	2	19	3
C0	1	^t BuOOH: 2	-	-	3	2	78	13
C0	1	^t BuOOH: 2	-	Acet:2	1	0.5	57	114
C0	1	^t BuOOH: 2	-	Acet:2	1	1	55	55
C0	1	^t BuOOH: 2	-	Acet:2	1	2	66	33
C0	1	^t BuOOH: 1.5	-	Acet:2	3	0.5	29	19
C0	1	^t BuOOH: 1.5	-	Acet:2	3	1	32	11
C0	1	^t BuOOH: 1.5	-	Acet:2	3	2	46	8
C0	1	^t BuOOH: 2	-	Acet:2	3	3	95	11
C0	1	^t BuOOH: 2	-	Acet:2	3	4	97	8
CO	1	^t BuOOH: 2	5 mol%	Acet:2 H₂O: 0.5	3	2	93	16
CO	1	^t BuOOH: 2	1 mmol	Acet:2 H₂O: 0.5	3	2	74	12
C0	1	^t BuOOH: 1	-	Acet:2	3	1	36	12
C0	1	^t BuOOH: 2 ^a	-	Acet:2	3	2	87	15
C0	1	^t BuOOH: 1	-	Acet:2	3	2	53	9

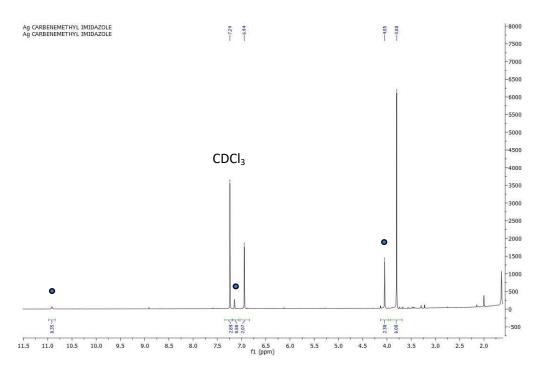

^a Batch addition, 1hr interval

Figure S23: Stacked NMR spectra of transfer hydrogenation of benzophenone using **C2** at time; 0, 0.5 h and 1 h. Ph₂CO (0.3 mmol), anisole (0.3 mmol), ⁱPrOH (300 μ L), catalyst (1 mol %), C₆D₆, 80 °C, KOH (10 mol%).

Figure S24: Stacked NMR spectra of alcohol oxidation of benzyl alcohol using **C1** at time; 0, 0.5 h, 1 h and 2 h. General conditions: substrate (1 mmol), catalytic loading (3 mol%), anisole (1 mmol), acetone (2 mL), [†]BuOOH (2 mmol), RT.

Figure S25: ¹H NMR spectrum of the reaction mixture containing the bis-carbene silver(I) intermediate using **L2** after 1 hour. Signals related to unreacted [H**L2**]Cl is indicated by blue dots (≈35%).

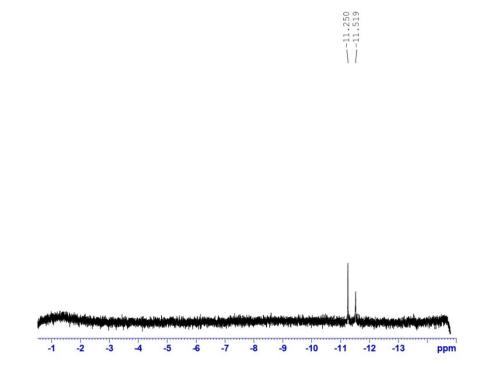


Figure S26: ¹H NMR spectrum of the hydride region of a transfer hydrogenation sample taken after 4 hours using C2 as catalyst.

General conditions: substrate (2 mmol), catalytic loading (3 mol%), anisole (2 mmol), acetone (2 mL), ^tBuOOH (4 mmol), RT.

Scheme S1: Proposed mechanism for the catalysed transfer hydrogenation reaction using **C2**.