Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2026

Choi et al. Supporting Information

Synthesis of 4-Amino Pyrrolo and Indolo[1,2-a]quinoxalines via Copper-
Catalyzed Insertion of O-benzoylhydroxylamines into Isocyanide

Chaeeun Lee, 2 Kyung Ah Kim,%* Nayoung Lim,%* Bomcha Park,? Jiwoo Lee,’ Ki Bum Hong,*, and
Sungwook Choi*-?

“Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
Email: swchoi2010@cnu.ac.kr
bPNew Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80
Cheombok-ro, Dong-gu, Daegu, Republic of Korea
Email: kbhong@kmedihub.re kr

Table of Contents
Lo GBINETALS ...ttt ettt e h e e a e bt e a bt e h e e a bt e bt e a bt e bt e a bt e bt e et e e bt e et e e ebeeebeenaeeenne 3
2. Synthesis and characterization of Starting AryliSOCYanides..........coceevuerierieniriiinienicine e 3
3. General procedure for the synthesis of pyrrolo[1,2-a]quinoxaline derivatives ..........ccceeeeuieerciveenieieeneeeenreeenne 7
4. Synthesis of compound 3a (2 MMOL SCALE) .......ccuiiiiiiiiiiiieie ettt et e 19
6. 'THNMR and 3C NMR spectra of all NEW PIrOAUCE ..........c.eevievieuieeieiieieieieeceteete ettt 19

S-1-1



Choi et al.

Supporting Information

Table S1. Optimization
D BzO\N catalyst (20 mol%) CEN?
K/o basle (xtetqulv ) N
solvent, temp O
2a 3a
. Yield
entry? catalyst Base (equiv.) solvent temp
(%)°
9 Cu(0Ac), EtsN DCE 100 78
15 Cu(0Ac), EtsN DCE 60 51
16 Cu(0Ac), Cs,C03 (2) DCE 100 56
17 Cu(0Ac), DBU (2) DCE 100 52
18 Cu(0Ac), DIEA (2) DCE 100 58
19 Cu(0Ac), K,CO; (2) DCE 100 56
20 Cu(0Ac), Na,CO03 (2) DCE 100 67
21 Cu(0Ac), NaHCO3 (2) DCE 100 68

Scheme S1. Mechanistic investigation and large-scale reaction

- o8z N N/
N/ N Standard condition
@E : [ j -
N™ °N
NC O TEMPO b
0}

1a 2a (2 equiv) with TEMPO (3 equiv)  3a, 44%
with TEMPO (5 equiv)  3a, 28%

- , N/
N/ Standard condition @[
-,

N" N

O

BHT (3 equiv) b
(o)
1a 2a (2 equiv) 3a, n.d.
@ 0Bz Cu(OAc),, (20 mol%) N/
@[N 7 N Et;N (2 equiv) @[
+ [ P
NC o DCE, 100 °C N ’\O)
1a (2 mmol) 2a (2 equiv) 3a,75 %

Scheme S2. Plausible Mechanism
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Addition of a dialkylamine radical (R,R3N¢) to the isonitrile unit of 1a furnishes imidoyl radical A, which
undergoes intramolecular cyclization to give radical B. Owing to the pronounced acidity of the a-proton, B is
deprotonated by triethylamine to afford radical anion C. Single-electron transfer from C to a O-
benzoylhydroxylamines then delivers product 3a and regenerates dialkylamine radical, thereby sustaining the

radical-chain propagation.

1. Generals

Unless otherwise noted, all solvents and reagents were purchased from commercial suppliers (Sigma-Aldrich,
TCI, and Alfa-Aesar) and used without further purification. Thin Layer Chromatography (TLC) was
performed on Merck (Silica gel 60, F-254, 0.25 mm). Chromatographic purifications were performed under
gradient using a Biotage® system and prepacked disposable silica cartridges using commercial 60 A silica
gel. NMR spectra were recorded on a Bruker 400-, 600-MHz spectrometers. Chemical shifts are reported as
o values in parts per million downfield from solvents as internal standards (CDCls: 7.26 ppm for 'H NMR and
77.04 ppm for 3C NMR). Mass spectra were obtained in positive electrospray ionization (ESI+) using an AB
SCIEX (1290 infinity II/Triple TOF 5600 plus). O-Benzoyl hydroxylamines (2a-q) were synthesized in
accordance with previously described methods.!** High resolution mass spectra (HRMS) were obtained by

AB SCIEX Triple TOF 5600 Plus System at Chungnam National University.
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2. Synthesis and characterization of Starting Arylisocyanides
Compounds 1a°, 1d®, 1i’, 1j7, 1k® and 47 are adapted in accordance to literature procedures, while substrates 1b, 1c,

and le-i were prepared as described below.

Method 1:

@ H [POCl5, DIPA_ @
b CE SIS i
=

NH, NC
S1b, c, e Szb, c,e 1b,c, e

A solution of S1 (1.0 equiv) in ethyl formate (78.0 equiv) and formic acid (22.0 equiv) was heated at reflux overnight.
After cooling to room temperature, the solvent was removed under reduced pressure to afford N-(2-pyrrolyl)phenyl

formamide quantitatively. The crude product was used directly in the next step without further purification.

To a solution of the above crude S2 (1.0 equiv) in dichloromethane (0.135 M) at 0 °C was added N,N-diisopropylamine
(DIPA) (6.0 equiv), followed by dropwise addition of phosphoryl trichloride (POCIls) (2.0 equiv). The reaction mixture
was stirred at 0 °C for 30 min and then at room temperature for 2 h. The mixture was cooled again to 0 °C and quenched
by slow addition of a 20% aqueous sodium carbonate solution, followed by dilution with dichloromethane (DCM, 5
mL). The organic layer was separated, washed sequentially with 20% aqueous sodium carbonate (NaHCO;) and brine,
dried over anhydrous sodium sulfate (Na,SQO,), and concentrated under reduced pressure. The residue was purified by

column chromatography on silica gel (n-hexane/ethyl acetate (EtOAc)) to yield the title compound.

Method 2:

@ HCOOH, Ac,0 POCly, EigN _ @
N/ N/
N THE C[ THF R {/\[
|
N o Z>NC

S1f-i S2f-i 1f-i

Acetic formic anhydride, prepared in situ from acetic anhydride (2.0 equiv) and formic acid (2.0 equiv) by stirring at
55 °C for 2 h, was added dropwise to a stirred solution of S1 (1.0 equiv) in tetrahydrofuran (THF, 0.52 M) at 0 °C. The
reaction mixture was stirred at room temperature for 30 min. After completion, volatiles were removed under reduced
pressure to afford N-(2-pyrrolyl)phenyl formamide quantitatively. The crude product was used directly in the subsequent

dehydration without further purification.

A solution of the crude S2 (1.0 equiv) and triethylamine (Et:N) (5.0 equiv) in THF (0.5 M) was cooled to 0 °C. POCls
(1.5 equiv) was then added dropwise, and the reaction mixture was stirred at 0 °C for 15 min. Upon completion of the
reaction, the mixture was quenched by the addition of saturated ammonium chloride (NH4CI) solution and extracted

with EtOAc (3 x). The combined organic extracts were dried over anhydrous Na,SO,4 and concentrated under reduced
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pressure. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc) to afford the title

compound.

1-(2-Isocyanophenyl)-1H-pyrrole (1a)°

o
NC
Compound 1a was prepared in accordance with the literature known procedure in 73% yield. 'H NMR (400 MHz,

CDCly) 6 7.53-7.44 (m, 2H), 7.39-7.31 (m, 2H), 7.02 (t, J = 2.2 Hz, 2H), 6.39 (t, J = 2.2 Hz, 2H). The spectral data are

in accordance with the literature.

1-(2-Isocyano-6-methylphenyl)-1H-pyrrole (1b)

42

Compound 1b was prepared in accordance with the general procedure for the synthesis of arylisocyanides by using S1b3
(3-methyl-2-(1H-pyrrol-1-yl)aniline, 1.25 mmol) as the starting material and purified by flash chromatography on silica
gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane) as a brown solid (Method 1, 173 mg, 75% yield, M.P. 50-
51 °C). '"H NMR (400 MHz, CDCl;) 6 7.39 (d, J= 8.1 Hz, 1H), 7.17 (s, 1H), 7.13 (d, /= 8.1 Hz, 1H), 7.00 (t, J=2.1
Hz, 2H), 6.37 (t,J= 2.1 Hz, 2H), 2.41 (s, 3H); *C NMR (101 MHz, CDCl;) 6 169.0, 141.1, 136.9, 128.4, 127.9, 126.7,
121.3, 110.4, 21.3; HRMS (ESI) m/z: [M+H*] Calcd for C;,H;1N, 183.0917; found 183.0918

1-(2-Isocyano-5-methylphenyl)-1 H-pyrrole (1¢)

N

e

Compound 1¢ was prepared in accordance with the general procedure for the synthesis of arylisocyanides by using S1¢®
(4-methyl-2-(1H-pyrrol-1-yl)aniline, 1.47 mmol) as the starting material and purified by flash chromatography on silica
gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane) as a light yellow solid (Method 1, 190 mg, 75% yield,
M.P. 93-94 °C). 'H NMR (400 MHz, CDCl;) 8 7.37-7.28 (m, 3H), 6.70 (t, J = 2.1 Hz, 2H), 6.39 (t, J = 2.1 Hz, 2H),
2.13 (s, 3H); *C NMR (101 MHz, CDCl;) 6 168.4, 138.0, 137.1, 131.6, 128.5, 125.1, 121.4, 109.9, 17.5; HRMS (ESI)
m/z: [M+H*] Caled for C;,H;;N, 183.0917; found 183.0917

1-(2-Isocyano-4-methylphenyl)-1H-pyrrole (1d)°
o
NC
Compound 1d was prepared in accordance with the literature known procedure in 33% yield. 'H NMR (400 MHz,

CDCly) 6 7.31 (s, 1H), 7.25 (s, 2H), 6.98 (t, J = 2.2 Hz, 2H), 6.37 (t, J= 2.1 Hz, 2H), 2.40 (s, 3H). The spectral data are

in accordance with the literature.
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1-(2-Isocyano-3-methylphenyl)-1H-pyrrole (1e)

2
>e

Compound 1e was prepared in accordance with the general procedure for the synthesis of arylisocyanides by using S1e’
(2-methyl-6-(1H-pyrrol-1-yl)aniline, 1.74 mmol) as the starting material and purified by flash chromatography on silica
gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane) as a light-yellow solid (115 mg, 36% yield, M.P. 68-69
°C). 'H NMR (400 MHz, CDCl;) 6 7.39-7.32 (m, 1H), 7.25-7.17 (m, 2H), 6.99 (t, J = 2.2 Hz, 2H), 6.38 (t, /= 2.1 Hz,
2H), 2.51 (s, 3H); *C NMR (101 MHz, CDCl3) 8 171.7, 137.4, 137.2, 129.5, 128.4, 123.7, 121.5, 110.3, 19.3; HRMS
(ESI) m/z: [M+H*] C;,H1N, 183.0917; found 183.092

1-(5-Chloro-2-isocyanophenyl)-1H-pyrrole (1f)

Cl N@
L,
Compound 1f was prepared in accordance with the general procedure for the synthesis of arylisocyanides by using S1f®
(4-chloro-2-(1H-pyrrol-1-yl)aniline, 0.5 mmol) as the starting material and purified by flash chromatography on silica
gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane) as a brown liquid (89 mg, 87% yield). '"H NMR (400
MHz, CDCls) 8 7.48-7.36 (m, 2H), 7.34-7.27 (m, 1H), 7.02 (t, J = 2.1 Hz, 2H), 6.40 (t, J = 2.1 Hz, 2H); *C NMR
(101MHz, CDCl3) 6 171.2, 138.0, 136.1,129.7,127.3,126.3, 121.2, 111.2; HRMS (ESI) m/z: [M *] Calcd for C;;H;CIN,
203.0371; found 202.0381

1-(4-Chloro-2-isocyanophenyl)-1H-pyrrole (1g)
(2

C|/©[NC
Compound 1g was prepared in accordance with the general procedure for the synthesis of arylisocyanides by using S1g®
(5-chloro-2-(1H-pyrrol-1-yl)aniline, 0.86 mmol3 as the starting material and purified by flash chromatography on silica
gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane) as a brown liquid (Method 2, 150 mg, 86% yield). 'H
NMR (400 MHz, CDCl;) 6 7.52 (d, J = 2.3 Hz, 1H), 7.49-7.42 (m, 1 H), 7.35-7.29 (m, 1H), 6.98 (t, J = 2.2 Hz, 2H),
6.40 (t, J= 2.2 Hz, 2H); 3*C NMR (101 MHz, CDCl;) 6 171.5, 135.9, 132.6, 130.7, 128.5, 127.2, 121.3, 111.0; HRMS
(ESI) m/z: [M+H*] Calcd for C;;HgCIN, 203.0371; found 203.0369

1-(5-Fluoro-2-isocyanophenyl)-1H-pyrrole (1h)

o
NC
Compound 1h was prepared in accordance with the general procedure for the synthesis of arylisocyanides by using S1h?

(4-fluoro-2-(1H-pyrrol-1-yl)aniline, 1.17 mmol) as the starting material and purified by flash chromatography on silica
gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane) as a green liquid (Method 2, 183 mg, 84% yield). 'H NMR
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(400 MHz, CDCl3) 6 7.51 (dd, J= 5.5, 8.9 Hz, 1H), 7.10 (dd, J = 2.8, 8.9 Hz, 1H), 7.07-7.04 (m, 1H), 7.04-7.01 (m,

2H), 6.40 (t, J = 2.2 Hz, 2H); 3C NMR (101 MHz, CDCl;) 6 170.2, 163.6, 161.1, 138.8, 138.7, 130.5, 130.4, 121.2,
114.4,114.2, 113.5,113.3, 111.2; HRMS (ESI) m/z: [M+H"] Calcd for C,;HgFN, 187.0666; found 187.0673

1-(4-Fluoro-2-isocyanophenyl)-1H-pyrrole (1i)’

Compound 1i was prepared in accordance with the literature known procedure in 87% yield. "H NMR (400 MHz, CDCls)
0 7.36 (dd, J=5.3, 8.9 Hz, 1H), 7.26-7.18 (m, 2H), 6.95 (t, J = 2.2 Hz, 2H), 6.39 (t, J = 2.2 Hz, 2H). The spectral data

are in accordance with the literature.

1-(2-Isocyano-4-methoxyphenyl)-1H-pyrrole (1)’
o
MeO NC

Compound 1j was prepared in accordance with the literature known procedure in 79% yield. 'H NMR (400 MHz,
CDCly) ¢ 7.31-7.26 (m, 1H), 7.03-6.97 (m, 2H), 6.92 (t, J = 2.1 Hz, 2H), 6.36 (t, J = 2.1 Hz, 2H), 3.85 (s, 3H). The

spectral data are in accordance with the literature.

1-(2-Isocyano-4-(trifluoromethyl)phenyl)-1H-pyrrole (1k)°
o
FsC NC

Compound 1k was prepared in accordance with the literature known procedure in 83% yield. '"H NMR (400 MHz,
CDCl3) 6 7.79 (s, 1H), 7.73 (dd, J= 1.6, 8.4 Hz, 1H), 7.51 (d, J= 8.5 Hz, 1H), 7.07 (t, J = 2.2 Hz, 2H), 6.44 (t, J=2.2

Hz, 2H). The spectral data are in accordance with the literature.
1-(2-Isocyanophenyl)-1H-indole (4)’
©:N Y
NC
Compound 4 was prepared in accordance with the literature known procedure in 91% yield. 'H NMR (400 MHz, CDCl;)

6 7.74-7.67 (m, 1H) 7.60 (d, J = 7.8 Hz, 1H) 7.57-7.52 (m, 2H) 7.48-7.41 (m, 1H) 7.33 (d, /= 3.4 Hz, 1H) 7.25-7.17
(m, 3H), 6.75 (d, J = 3.3 Hz, 1H). The spectral data are in accordance with the literature.
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3. General procedure for the synthesis of pyrrolo[1,2-a]quinoxaline derivatives

_\

N_/
0,
AN @ B20. R, Cu(OAc), (20 mol%) C[?
R N Et3N (1 equiv.)

|
Z>NC R, DCE, 100 °C

1a, 4 2b-q 3ab-q, 5a-f

A mixture of compound 1a, 4 (0.2 mmol, 1.0 equiv), O-benzoylhydroxylamine (0.4 mmol, 2.0 equiv), Cu(OAc): (7.4
mg, 0.04 mmol, 0.2 equiv), and EtsN (56 pL, 0.4 mmol, 2.0 equiv) in DCM (2—4 mL, 0.05-0.1 M) was heated at 100 °C
and stirred for 3—24 h. After completion, the reaction mixture was diluted with EtOAc and washed sequentially with
saturated NaHCO; solution and brine. The organic layer was dried over anhydrous Na,SO,, filtered, and concentrated
under reduced pressure. The crude product was purified by column chromatography on silica gel (n-hexane/EtOAc) to

afford the desired amination product.

4-(Pyrrolo[1,2-a]quinoxalin-4-yl)morpholine (3a)
S04
N
Lo

Compound 3a was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-aJquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a yellow solid (35 mg, 69% yield, M.P. 76-77 °C). '"H NMR (400 MHz, CDCl;) & 7.84-7.81 (m, 1H), 7.76-7.66 (m,
2H), 7.36-7.26 (m, 2H), 6.79-6.73 (m, 2H), 3.93-3.87 (m, 4H), 3.82-3.76 (m, 4H); *C NMR (101MHz, CDCl;) 6 152.7,
136.0, 127.6, 125.9, 125.2, 124.3, 120.1, 114.5, 113.3, 112.5, 106.6, 67.0, 48.7, HRMS (ESI) m/z: [M+H"] Calcd for
C1sH6N30 254.1293; found 254.1268.

Benzyl 4-(pyrrolo[1,2-a]Jquinoxalin-4-yl)piperazine-1-carboxylate (3b)
@E”?

Compound 3b was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline

NCbz

derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a yellow solid (55 mg, 71% yield, M.P. 98-99 °C). '"H NMR (400 MHz, CDCl;) 6 7.87-7.81 (m, 1H), 7.78-7.71 (m,
1H), 7.67 (dd, J = 1.6, 7.8 Hz, 1H), 7.41-7.27 (m, 7H), 6.81-6.74 (m, 2H), 5.19 (s, 2H), 3.84-3.67 (m, 8H); 3*C NMR
(101MHz, CDCl;) 6 155.4, 152.6, 136.7, 135.9, 128.6, 128.1, 128.0, 127.7, 125.9, 125.2, 124.4, 120.2, 114.6, 113.3,
112.6, 106.6, 67.3, 47.9, 43.8; HRMS (ESI) m/z: [M+H"] Calcd for C,3H,3;N40, 387.1816; found 387.1802.
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tert-Butyl 4-(pyrrolo[1,2-a]quinoxalin-4-yl)piperazine-1-carboxylate (3¢)

L
" NK/NBoc

Compound 3¢ was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a yellow solid (43 mg, 66% yield, M.P. 124-126 °C). 'H NMR (400MHz, CDCl3) 6 7.83 (t,J=2.0 Hz, 1H), 7.74 (dd,
J=1.6,7.8 Hz, 1H), 7.67 (dd, J = 1.6, 7.8 Hz, 1H), 7.31 (ddd, J = 1.6, 7.8, 9.7 Hz, 2H), 6.79-6.75 (m, 2H), 3.79-3.73
(m, 4H), 3.67-3.62 (m, 4H), 1.50 (s, 9H); *C NMR (101MHz, CDCl;) 6 154.9, 152.7, 136.0, 127.6, 125.9, 125.2, 124.3,
120.2, 114.5, 113.3, 112.6, 106.6, 79.9, 47.9, 28.5, 28.4; HRMS (ESI) m/z: [M+H"] Calcd for CyH,sN40, 353.1972;
found 353.1961.

4-(Pyrrolo[1,2-a]quinoxalin-4-yl)thiomorpholine (3d)
oY
NTONTY
s

Compound 3d was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a light yellow solid (34 mg, 63% yield, M.P. 139-140 °C). '"H NMR (400MHz CDCl;) 6 7.82 (dd, J= 1.3, 2.8 Hz,
1H), 7.73 (dd, J= 1.4, 7.8 Hz, 1H), 7.66 (dd, J = 1.6, 7.8 Hz, 1H), 7.36-7.26 (m, 2H), 6.79-6.70 (m, 2H), 4.14-4.01 (m,
4H), 2.93-2.76 (m, 4H); 3C NMR (101MHz, CDCl;) & 152.6, 136.0, 127.5, 125.8, 125.2, 124.2, 120.2, 114.5, 113.3,
112.5, 106.6, 50.6, 27.4; HRMS (ESI) m/z: [M+H"] Caled for C;sH¢N;S 270.1059; found 270.1062.

4-(Pyrrolo[1,2-a]quinoxalin-4-yl)thiomorpholine 1,1-dioxide (3e)
@N?
NTONTY
L_so0
o]

Compound 3e was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a brown solid (11 mg, 18% yield, M.P. 240-241 °C). '"H NMR (400MHz ,CDCl;) 8 7.89 (d, J= 1.5 Hz, 1H), 7.82-
7.74 (m, 1H), 7.69 (dd, J = 3.3, 6.3 Hz, 1H), 7.43-7.33 (m, 2H), 6.85-6.74 (m, 2H), 4.40-4.24 (m, 4H), 3.33-3.18 (m,
4H); *C NMR (101MHz, CDCls) 8 150.9, 135.2, 128.1, 126.0, 125.5, 125.4, 119.4, 115.2, 113.5, 113.1, 106.6, 51.5,
46.6; HRMS (ESI) m/z: [M+H"] Calcd for C;sH;sN30,S 302.0958; found 302.0966.

4-(Piperidin-1-yl)pyrrolo[1,2-a]quinoxaline (3f)
oY
N7 I\O
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Compound 3f was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline

derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 4—34% EtOAc in n-hexane)
as a yellow solid (28 mg, 55% yield, M.P. 101-103 °C). 'H NMR (400MHz , CDCls) 6 7.79 (d, J = 1.4 Hz, 1H), 7.73-
7.69 (m, 1H), 7.67-7.63 (m, 1H), 7.34-7.26 (m, 1H), 7.25-7.21 (m, 1H), 6.80-6.71 (m, 2H), 3.73 (d, J = 5.6 Hz, 4H),
1.84-1.67 (m, 6H); *C NMR (101MHz, CDCl;) 8 153.2, 136.5, 127.3, 125.8, 125.1, 123.6, 120.6, 114.2, 113.2, 112.3,
106.8, 49.3, 26.1, 25.1; HRMS (ESI) m/z: [M+H"] Caled for C;sH;;N; 252.1495; found 252.1499.

8-(Pyrrolo[1,2-a]quinoxalin-4-yl)-1,4-dioxa-8-azaspiro[4.5]decane (3g)

T,
5/

Compound 3g was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a yellow syrup (43 mg, 70% yield). '"H NMR (400MHz ,CDCl;) 6 7.81 (dd, J = 1.3, 2.6 Hz, 1H), 7.72 (dd, J= 1.3,
7.9 Hz, 1H), 7.66 (dd, J=1.5, 7.9 Hz, 1H), 7.34-7.24 (m, 2H), 7.24 (d, J= 1.4 Hz, 1H), 6.82-6.72 (m, 2H), 4.02 (s, 4H),
3.95-3.85 (m, 4H), 1.94-1.89 (m, 4H); 3C NMR (101MHz, CDCl;) & 152.4, 136.3, 127.4, 125.8, 125.1, 123.8, 120.3,
114.3,113.2, 112.4, 107.7, 106.7, 64.4, 46.1, 35.2; HRMS (ESI) m/z: [M+H*] Calcd for C;3sH,N3;0, 310.1550; found
310.1552.

Ethyl 1-(pyrrolo[1,2-a]quinoxalin-4-yl)piperidine-4-carboxylate (3h)

©:N/ N

O\COZEt

Compound 3h was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a yellow syrup (45 mg, 69% yield). '"H NMR (400 MHz, CDCl;) & 7.81 (dd, J= 1.4, 2.6 Hz, 1H), 7.73 (dd, J= 1.5,
7.9 Hz, 1H), 7.67 (dd, J = 1.5, 7.9 Hz, 1H), 7.35-7.25 (m, 2H), 6.80-6.73 (m, 2H), 4.40 (td, J = 3.2, 13.5 Hz, 2H), 4.18
(q,J=7.1 Hz, 2H), 3.23-3.10 (m, 2H), 2.61 (tt, J=4.1, 11.1 Hz, 1H), 2.13-1.88 (m, 4H), 1.36-1.20 (m, 3H); *C NMR
(101MHz, CDCl5) 6 174.8, 153.0, 136.2, 127.5, 125.9, 125.1, 124.0, 120.4, 114.3, 113.3, 112.5, 106.6, 60.5, 47.8, 41.8,
28.3, 14.3, 0.0; HRMS (ESI) m/z: [M+H"] Calcd for C;9yH»,N30,324.1707; found 324.1711.

4-(Azepan-1-yl)pyrrolo[1,2-a]quinoxaline (3i)
oy
Compound 3i was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]quinoxaline

derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane)

as a yellow syrup (30 mg, 57% yield). "H NMR (400MHz ,CDCls) 8 7.81 (dd, J= 1.1, 2.7 Hz, 1H), 7.66 (d, J = 8.0 Hz,
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1H), 7.56 (d, J = 8.0 Hz, 1H), 7.28-7.24 (m, 1H), 7.17-7.11 (m, 1H), 6.87 (d, J = 3.5 Hz, 1H), 6.74-6.69 (m, 1H), 4.05-

3.89 (m, 4H), 1.95 (br. s., 4H), 1.74-1.59 (m, 4H); '3C NMR (101MHz, CDCl;) § 151.3, 137.0, 126.5, 125.1, 125.0,
122.1, 119.6, 114.3, 113.0, 111.9, 107.7, 49.3, 29.1, 27.5; HRMS (ESI) m/z: [M+H"] Calcd for C,;HyN; 266.1652
found 266.1652.

4-(Pyrrolidin-1-yl)pyrrolo[1,2-a]Jquinoxaline (3j)
oy
N" I\D

Compound 3j was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a yellow syrup (35 mg, 74% yield). '"H NMR (400 MHz, CDCl;) 6 7.80 (dd, J = 1.3, 2.8 Hz, 1H), 7.64 (dd, J= 1.3,
8.1 Hz, 1H), 7.56 (dd, J= 1.3, 8.1 Hz, 1H), 7.28-7.22 (m, 1H), 7.12 (dt, /= 1.4, 7.6 Hz, 1H), 6.93 (dd, J = 1.3, 4.1 Hz,
1H), 6.70 (dd, J = 2.9, 4.0 Hz, 1H), 4.01-3.88 (m, 4H), 2.08-1.95 (m, 4H); 1*C NMR (101MHz, CDCl;) 3 149.8, 137.5,

126.2,125.2,124.9,121.9,120.2, 114.2,113.1, 111.9, 107.6, 48.8, 25.6; HRMS (ESI) m/z: [M+H"] Calcd for C;sH;sN;
238.1339 found 238.1344.

N,N-dipropylpyrrolo[1,2-aJquinoxalin-4-amine (3k)
oY
N I\Q\/

Compound 3k was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a light yellow solid (47 mg, 88% yield, M.P. 73-75 °C). '"H NMR (400MHz ,CDCls) 8 7.80 (dd, /= 1.2, 2.7 Hz, 1H),
7.68-7.64 (m, 1H), 7.55 (dd, J= 1.2, 8.1 Hz, 1H), 7.28-7.24 (m, J= 1.3 Hz, 1H), 7.17-7.12 (m, 1H), 6.77-6.70 (m, 2H),
3.76-3.61 (m, 4H), 1.85-1.76 (m, 4H), 0.99 (t, J= 7.4 Hz, 6H); 3C NMR (101MHz, CDCl;) 6 150.6, 136.9, 126.6, 125.0,
125.0, 122.2, 119.7, 114.1, 113.0, 112.0, 107.0, 51.8, 21.8, 11.4; HRMS (ESI) m/z: [M+H"] Calcd for C;;H;,N3
268.1808; found 268.1813.

N,N-dibenzylpyrrolo[1,2-a]quinoxalin-4-amine (31)
oY
N/ '}j Bn
Bn

Compound 31 was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline

derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane)

as a brown syrup (44 mg, 60% yield). '"H NMR (400MHz ,CDCl;) ¢ 7.83 (dd, J= 1.2, 2.7 Hz, 1H), 7.71 (dd, J= 1.1,

8.0 Hz, 1H), 7.63 (dd, /= 1.3, 8.0 Hz, 1H), 7.41-7.37 (m, 4H), 7.36-7.30 (m, 5H), 7.30-7.26 (m, 2H), 7.25-7.20 (m, 1H),

6.69-6.60 (m, 2H), 5.01 (s, 4H); *C NMR (101MHz, CDCls) 6 151.6, 138.4, 136.6, 128.6, 127.8, 127.1, 127.0, 125.4,
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125.2,123.0, 119.1, 114.6, 113.1, 112.4, 107.7, 51.6; HRMS (ESI) m/z: [M+H"] Calcd for C,sH,,N3 364.1808; found

364.1812.

4-(4-(Pyrimidin-2-yl)piperazin-1-yl)pyrrolo[1,2-aJquinoxaline (3m)

©:N/ N
waﬁ
N~
Compound 3m was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-hexane)
as a brown solid (47 mg, 71% yield, M.P. 120-121 °C). '"H NMR (400MHz ,CDCl;) & 8.36 (d, J = 4.8 Hz, 2H), 7.84
(dd,J=1.2,2.7 Hz, 1H), 7.77-7.66 (m, 2H), 7.36-7.26 (m, 2H), 6.84 (dd, J=1.1, 4.0 Hz, 1H), 6.79 (dd, /= 2.9, 3.9 Hz,
1H), 6.53 (t, J=4.7 Hz, 1H), 4.11-4.00 (m, 4H), 3.96-3.85 (m, 4H); *C NMR (101MHz, CDCl;) 6 161.8, 157.8, 152.7,

136.1,127.6,125.9, 125.2, 124.1, 120.3, 114.5, 113.3, 112.6, 110.1, 106.8, 47.8, 43.7; HRMS (ESI) m/z: [M+H"] Calcd
for C1oH9Ng 331.1666; found 331.1665.

N-Isopropylpyrrolo[1,2-a]quinoxalin-4-amine (3n)

N/

LA

Compound 3n was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, isocratic elution: 1% EtOAc in n-hexane) as
a brown solid (17 mg, 38% yield, M.P. 115-116 °C). 'H NMR (400 MHz, CDCl;) 6 7.77 (dd, J= 1.3, 2.7 Hz, 1H), 7.69
(dd,J=1.2,8.1 Hz, 1H), 7.64 (dd, /= 1.3, 8.1 Hz, 1H), 7.34-7.27 (m, 1H), 7.23-7.17 (m, 1H), 6.71 (dd, J= 2.8, 3.8 Hz,
1H), 6.60 (dd, J = 1.3, 3.9 Hz, 1H), 4.71 (d, J = 7.0 Hz, 1H), 4.65-4.53 (m, 1H), 1.35 (s, 3H), 1.34 (s, 3H); 3C NMR
(101MHz, CDCl3) &; HRMS (ESI) m/z: [M+H] Calcd for C4H4N; 226.1339; found 226.1343.

N-(tert-Butyl)pyrrolo[1,2-aJquinoxalin-4-amine (30)

N’/

LA &

Compound 30 was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, isocratic elution: 1% EtOAc in n-hexane) as
a brown solid (7 mg, 16% yield, M.P. 98-99 °C). 'H NMR (400 MHz, CDCls) 6 7.75 (dd, J = 1.2, 2.6 Hz, 1H), 7.70-
7.61 (m, 2H), 7.31-7.27 (m, 1H), 7.22-7.16 (m, 1H), 6.72-6.64 (m, 1H), 6.53 (dd, /= 1.0, 3.9 Hz, 1H), 4.75 (br. s., 1H),
1.61 (s, 9H); 3*C NMR (101MHz, CDCl;) 6 148.5, 137.1, 127.3, 125.1, 125.0, 122.5, 120.0, 114.0, 113.2, 112.0, 101.4,
52.1,29.5; HRMS (ESI) m/z: [M+H"] Calcd for C;sH;3sN; 240.1495; found 240.1502.
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N-Cyclohexylpyrrolo[1,2-a]quinoxalin-4-amine (3p)

CLL O

Compound 3p was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, isocratic elution: 1% EtOAc in n-hexane) as
a yellow solid (23 mg, 43% yield, M.P. 83-84 °C). 'H NMR (400MHz, CDCl3) & 7.77 (d, J= 1.5 Hz, 1H), 7.69 (dd, J =
1.1, 8.1 Hz, 1H), 7.64 (dd, J = 1.1, 8.0 Hz, 1H), 7.34-7.25 (m, 1H), 7.23-7.16 (m, 1H), 6.73-6.68 (m, 1H), 6.60 (d, J =
3.1 Hz, 1H), 4.80 (d, /= 7.3 Hz, 1H), 4.35-4.22 (m, 1H), 2.24-2.13 (m, 2H), 1.79 (td, J= 3.6, 13.4 Hz, 2H), 1.69 (td, J
= 3.8, 12.9 Hz, 1H), 1.58-1.45 (m, 2H), 1.36-1.27 (m, 3H); 3C NMR (101MHz, CDCls) é 148.5, 137.2, 126.8, 125.3,
125.1, 122.6, 119.6, 114.3, 113.3, 112.2, 102.0, 48.8, 33.6, 25.9, 25.1; HRMS (ESI) m/z: [M+H"] Calcd for C;7H»N3
266.1652; found 266.1657.

N-Cyclopentylpyrrolo[1,2-a]quinoxalin-4-amine (3q)

sefls

Compound 3q was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, isocratic elution: 1% EtOAc in n-hexane) as
a yellow solid (10 mg, 20% yield, M.P. 159-160 °C). '"H NMR (400 MHz, CDCl;) 6 7.77 (dd, J= 1.2, 2.6 Hz, 1H), 7.73-
7.61 (m, 2H), 7.36-7.27 (m, 1H), 7.23-7.15 (m, 1H), 6.75-6.66 (m, 1H), 6.63-6.54 (m, 1H), 4.86 (d, J = 6.6 Hz, 1H),
4.77-4.61 (m, 1H), 2.37-2.08 (m, 2H), 1.84-1.64 (m, 4H), 1.61-1.50 (m, 2H); 3C NMR (101MHz, CDCls) & 149.0,
137.3, 126.9, 125.3, 125.1, 122.6, 119.7, 114.2, 113.3, 112.2, 101.9, 52.2, 33.7, 23.9; HRMS (ESI) m/z: [M+H"] Calcd
for C;6HgN3 252.1495; found 252.1500.

N-(Pyrrolo[1,2-a]quinoxalin-4-yl)benzamide (3r)
sed

H
Compound 3s was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 5—40% EtOAc in n-hexane)
as a brown solid (32 mg, 55% yield, M.P. 167-168 °C). "H NMR (400 MHz, CDCl;) 6 14.55 (s., 1H), 8.41 (br. s., 2H),
7.87 (s., 1H), 7.84-7.68 (m, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.55-7.45 (m, 3H), 7.37 (d, J = 3.9 Hz, 3H), 6.93-6.77 (m,

1H); 3C NMR (151 MHz, CDCl;) 6 137.9, 131.9, 129.4, 129.1, 128.1, 127.5, 125.9, 125.3, 120.4, 117.6, 114.4, 114.2,
112.9, 29.7; HRMS (ESI) m/z: [M+H"] Calcd for C,sH;4N;0O 288.1131; found 288.1130

4-(Indolo[1,2-a]quinoxalin-6-yl)morpholine (5a)

S-1-13



Choi et al. Supporting Information

INNZ

©:N/ N

O
Compound 5a was prepared in accordance with the general procedure for the synthesis of indolo[ 1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-
hexane) as a light brown solid (43 mg, 71% yield, M.P. 168-169 °C). 'H NMR (400 MHz, CDCl;) & 8.47-8.40 (m,
2H), 7.90 (d, J=7.9 Hz, 1H), 7.76 (dd, J= 1.6, 7.8 Hz, 1H), 7.51 (dt, J= 1.1, 7.8 Hz, 1H), 7.45-7.39 (m, 2H), 7.38-
7.32 (m, 1H), 7.07 (s, 1H), 3.99-3.93 (m, 4H), 3.82-3.75 (m, 4H); *C NMR (101 MHz, CDCl3)§ 153.9, 135.9, 133.3,
128.9, 128.9, 128.0, 125.2, 124.8, 124.2, 123.9, 122.6, 122.3, 114.6, 114.5, 100.2, 67.0, 49.2; HRMS (ESI) m/z:
[M+H*] Calcd for CoHgN;O 304.1444; found 304.1446

Benzyl 4-(indolo[1,2-a]quinoxalin-6-yl)piperazine-1-carboxylate (5b)

N/

©:N/ N
L_Ncbz

Compound 5b was prepared in accordance with the general procedure for the synthesis of indolo[1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 6—50% EtOAc in n-
hexane) as a yellow solid (60 mg, 69% yield, M.P. 143-145 °C). 'H NMR (400 MHz, CDCl;) 6 8.43 (t, /= 8.4 Hz,
2H), 7.91 (d,J=7.9 Hz, 1H), 7.75 (dd, J = 1.3, 7.9 Hz, 1H), 7.54-7.49 (m, 1H), 7.45-7.43 (m, 1H), 7.42-7.41 (m, 1H),
7.40-7.37 (m, 4H), 7.37-7.32 (m, 2H), 7.06 (s, 1H), 5.20 (s, 2H), 3.78 (s, 8H); *C NMR (101 MHz, CDCl;) 8 155.4,
153.8,136.7, 135.8, 133.3, 129.0, 128.8, 128.6, 128.1, 128.1, 128.0, 125.3, 124.8, 124.2, 124.0, 122.6, 122.4, 114.6,
114.5,100.2, 67.3, 48.4, 43.8; HRMS (ESI) m/z: [M+H"] Caled for C,7H»sN,O, 437.1972; found 437.1965

4-(Indolo[1,2-a]quinoxalin-6-yl)thiomorpholine (5¢)

N

©:N/ N

S
Compound 5S¢ was prepared in accordance with the general procedure for the synthesis of indolo[ 1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—100% EtOAc in n-
hexane) as a light yellow solid (40 mg, 63% yield, M.P. 166-167 °C). '"H NMR (400 MHz, CDCl;) 6 8.43 (t,J=9.3
Hz, 2H), 7.90 (d, /= 8.0 Hz, 1H), 7.74 (dd, J = 1.5, 7.8 Hz, 1H), 7.53-7.47 (m, 1H), 7.41 (t, J= 7.6 Hz, 2H), 7.37-7.32
(m, 1H), 7.02 (s, 1H), 4.14-4.01 (m, 4H), 2.97-2.85 (m, 4H); *C NMR (101 MHz, CDCl;) 4 154.0, 135.9, 133.3,
128.8, 128.8, 127.9, 125.1, 125.0, 124.2, 123.9, 122.6, 122.3, 114.5, 114.5, 100.1, 51.0, 27.5; HRMS (ESI) m/z:
[M+H*] Calcd for C;oH;sN3S 320.1216; found 320.1221
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Ethyl 1-(indolo[1,2-a]quinoxalin-6-yl)piperidine-4-carboxylate (5d)

N_/
L,
e
CO,Et

Compound 5d was prepared in accordance with the general procedure for the synthesis of indolo[1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 3—28% EtOAc in n-
hexane) as a light brown solid (55 mg, 74% yield, M.P. 94-96 °C). '"H NMR (400 MHz, CDCl;) 6 8.46-8.38 (m, 2H),
7.90 (d, J=8.0 Hz, 1H), 7.74 (dd, J= 1.6, 7.8 Hz, 1H), 7.49 (dt, J= 1.2, 7.8 Hz, 1H), 7.43-7.37 (m, 2H), 7.36-7.30
(m, 1H), 7.06 (s, 1H), 4.37 (td, /= 3.0, 13.3 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.24-3.13 (m, 2H), 2.64 (tt, J=4.2,
11.0 Hz, 1H), 2.17-2.10 (m, 2H), 2.08-1.97 (m, 2H), 1.30 (t, /= 7.1 Hz, 3H); *C NMR (101 MHz, CDCl;) § 174.8,
154.2,136.1, 133.3, 128.9, 127.9, 125.1, 124.9, 124.1, 123.8, 122.5, 122.3, 114.5, 114.5, 100.2, 60.5, 48.3, 41.8, 28.3,
14.3, 0.0 HRMS (ESI) m/z: [M+H*] Calcd for Cy3H4N30, 374.1863; found 374.1857

N,N-dipropylindolo|[1,2-a]quinoxalin-6-amine (5e)

O X
N/ '\g\/

Compound Se was prepared in accordance with the general procedure for the synthesis of indolo[ 1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 3—24% EtOAc in n-
hexane) as a light yellow solid (45 mg, 71% yield, M.P. 131-132 °C). '"H NMR (400 MHz, CDCl;) 6 8.44 (d, J=8.6
Hz, 1H), 8.41-8.34 (m, 1H), 7.89 (d, /= 8.0 Hz, 1H), 7.71-7.58 (m, 1H), 7.47 (ddd, /= 1.3, 7.1, 8.5 Hz, 1H), 7.43-
7.33 (m, 1H), 7.33 - 7.26 (m, 2H), 7.07 (s, 1H), 3.81-3.57 (m, 4H), 1.95-1.74 (m, 4H), 1.01 (t, /= 7.4 Hz, 6H); 13C
NMR (101 MHz, CDCl;) 6 152.1, 136.8, 133.1, 128.8, 128.1, 126.9, 125.0, 124.1, 123.6, 123.3, 122.2, 122.2, 114.5,
114.3, 100.3, 52.0, 21.6, 11.5; HRMS (ESI) m/z: [M+H"] Calcd for C, H,4N3 318.1965; found 318.1966

N-(Indolo[1,2-a]quinoxalin-6-yl)benzamide (5f)

Compound 5f was prepared in accordance with the general procedure for the synthesis of indolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 1—8% EtOAc in n-
hexane) as a brown solid (26 mg, 38% yield, M.P. 121-122 °C) 'H NMR (400 MHz, CDCl;) 6 8.70 (d, J = 8.3 Hz,
1H), 7.85-7.71 (m, 1H), 7.62-7.49 (m, 2H), 7.46-7.35 (m, 2H), 7.32-7.27 (m, 2H), 7.26-7.19 (m, SH), 7.19-7.14 (m,
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1H), 6.79 (d, J= 3.1 Hz, 1H); 3C NMR (101 MHz, CDCl;) 4 165.1, 136.6, 134.9, 134.2, 131.9, 129.4, 128.7, 128.7,

128.5, 128.0, 126.7, 124.6, 123.2, 121.6, 121.5, 120.9, 110.5, 104.6; MS (ESI) m/z 338.21

4-(9-Methylpyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6b)
NN
Lo

Compound 6b was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a yellow solid (38 mg, 71% yield, M.P. 113-114 °C). '"H NMR (400 MHz, CDCl;) 6 7.84-7.77 (m, 1H), 7.64-7.47
(m, 2H), 7.15 (dd, J= 1.3, 8.2 Hz, 1H), 6.78-6.69 (m, 2H), 3.94-3.89 (m, 4H), 3.80-3.66 (m, 4H), 2.49 (s, 3H); *C NMR
(101MHz, CDCl3) 6 152.4,134.5, 133.7, 127.5, 126.4, 125.7, 120.3, 114.2, 113.5, 112.5, 106.3, 67.0, 48.9, 21.6; HRMS
(EST) m/z: [M+H"] Calcd for C¢H;sN;O 268.1444; found 268.1449.

4-(8-Methylpyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6¢)
Y
NTONTY
Lo

Compound 6¢ was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a yellow solid (39 mg, 73% yield, M.P. 97-98 °C). 'H NMR (400 MHz, CDCl;) 6 8.15 (dd, J = 1.3, 2.9 Hz, 1H),
7.63-7.50 (m, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.13-7.06 (m, 1H), 6.82-6.68 (m, 2H), 3.99-3.81 (m, 4H), 3.81-3.64 (m,
4H), 2.87 (s, 3H); 3C NMR (101MHz, CDCls) 6 152.8, 137.5, 128.2, 126.2, 126.2, 124.8, 124.6, 121.3, 120.0, 111.8,
105.8, 67.0, 48.9, 23.6; HRMS (ESI) m/z: [M+H"] Caled for C;4sH;gN;O 268.1444; found 268.1456.

4-(7-Methylpyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6d)
oY
N
Lo

Compound 6d was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a yellow solid (36 mg, 67% yield, M.P. 113-114 °C). 'H NMR (400 MHz, CDCl3) 6 7.79 (t,J=2.1 Hz, 1H), 7.62 (d,
J=8.3 Hz, 1H), 7.50 (s, 1H), 7.11 (dd, J = 1.8, 8.3 Hz, 1H), 6.78-6.69 (m, 2H), 3.95-3.85 (m, 4H), 3.81-3.72 (m, 4H),
2.44 (s, 3H); C NMR (101MHz, CDCl;) 6 152.8, 135.9, 134.9, 127.6, 125.4, 123.8, 120.0, 114.3, 113.0, 112.3, 106.4,
67.0,48.8, 21.1; HRMS (ESI) m/z: [M+H*] Calcd for C¢HsN;0 268.1444; found 268.1442.

4-(6-Methylpyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6e)
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by

Compound 6e was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a light yellow solid (36 mg, 68% yield, M.P. 94-95 °C). '"H NMR (400 MHz, CDCls) § 7.82 (t, /= 2.0 Hz, 1H), 7.60
(dd, J=1.3, 7.8 Hz, 1H), 7.24-7.14 (m, 2H), 6.82-6.68 (m, 2H), 3.96-3.88 (m, 4H), 3.84-3.75 (m, 4H), 2.63 (s, 3H); 3C
NMR (101MHz, CDCI3) 6 151.3, 136.1, 134.2, 126.1, 125.6, 123.6, 119.9, 114.6, 112.4, 111.1, 106.1, 66.9, 48.6, 18.0;
HRMS (ESI) m/z: [M+H*] Calecd for C;sHgN;O 268.1444; found 268.1442

4-(8-Chloropyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6f)
NN
Lo

Compound 6f was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a brown solid (32 mg, 56% yield, M.P. 162-163 °C). 'H NMR (400 MHz, CDCls) § 7.79-7.64 (m, 2H), 7.58 (d, J =
8.6 Hz, 1H), 7.33-7.26 (m, 1H), 6.81-6.73 (m, 2H), 3.94-3.85 (m, 4H), 3.83-3.74 (m, 4H); *C NMR (101MHz, CDCl;)
0 152.5, 134.7, 129.2, 128.6, 126.4, 125.4, 119.9, 114.7, 113.5, 113.0, 107.2, 66.9, 48.5; HRMS (ESI) m/z: [M+H"]
Calcd for C;sH,;5CIN;O 288.0898; found 288.0902

4-(7-chloropyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6g)
o
cl NTONTY
Lo

Compound 6g was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a brown solid (27 mg, 47% yield, M.P.138-139 °C). '"H NMR (400 MHz, CDCls) 6 7.78 (dd, J= 1.3, 2.6 Hz, 1H),
7.69-7.60 (m, 2H), 7.22 (dd, J = 2.3, 8.7 Hz, 1H), 6.84-6.70 (m, 2H), 3.92-3.86 (m, 4H), 3.85-3.79 (m, 4H); 3C NMR
(101MHz, CDCl3) 8 152.9,137.2,130.3, 126.8, 124.4,123.9,119.7, 114.8, 114.3, 112.8, 107.3, 66.9, 48.4; HRMS (ESI)
m/z: [M+H"] Calcd for C;5H;5CIN;0O 288.0898; found 288.0904

4-(8-Fluoropyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6h)
oY
NN
Lo
Compound 6h was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]quinoxaline

derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
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as a yellow solid (31 mg, 56% yield, M.P. 126-127 °C). 'H NMR (400 MHz, CDCL;) § 7.71 (dd, J = 1.4, 2.5 Hz, 1H),

7.64 (dd, J=5.8,8.9 Hz, 1H), 7.42 (dd, J=2.7,9.3 Hz, 1H), 7.06 (dt, /=2.8, 8.6 Hz, 1H), 6.84-6.73 (m, 2H), 3.95-3.86
(m, 4H), 3.80-3.70 (m, 4H); *C NMR (101MHz, CDCl3) 6 160.7, 158.3, 152.2, 132.4, 132.4,129.1, 129.0, 126.3, 126.2,
120.0, 114.6, 113.0, 112.9, 112.6, 106.9, 100.4, 100.1, 66.9, 48.7; HRMS (ESI) m/z: [M+H*] Calcd for; HRMS (ESI)
m/z: [M+H+] Calcd for C,5HsFN;O 272.1194; found 272.1202

4-(7-Fluoropyrrolo|[1,2-a]quinoxalin-4-yl)morpholine (6i)
oY
F NN
Lo

Compound 6i was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]quinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—22% EtOAc in n-hexane)
as a brown solid (30 mg, 55% yield, M.P. 123-124 °C). '"H NMR (400 MHz, CDCls) 6 7.77 (dd, J = 1.3, 2.6 Hz, 1H),
7.66 (dd, J=5.2, 8.9 Hz, 1H), 7.33 (dd, J = 2.8, 9.9 Hz, 1H), 7.00 (dt, J = 2.9, 8.5 Hz, 1H), 6.81-6.71 (m, 2 H), 3.93-
3.86 (m, 4H), 3.86-3.78 (m, 4H); 3C NMR (101MHz, CDCl;) 6 161.4, 159.0, 153.1, 137.6, 137.5, 122.4, 119.6, 114.7,
114.2, 114.1, 112.9, 112.7, 112.6, 111.5, 111.2, 107.1, 66.9, 48.4; HRMS (ESI) m/z: [M+H"] Calcd for C,sH;sFN;0
272.1194; found 272.1199

4-(7-Methoxypyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6j)
ot
MeO N r\()
O

Compound 6j was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 4—40% EtOAc in n-hexane)
as a yellow solid (36 mg, 64% yield, M.P. 144-145 °C). '"H NMR (400MHz, CDCl;) 8 7.75 (dd, J = 1.4, 2.4 Hz, 1H),
7.64 (d,J=9.0Hz, 1 H), 7.17 (d, J = 2.8 Hz, 1H), 6.90 (dd, J = 2.8, 8.9 Hz, 1H), 6.84-6.62 (m, 2H), 3.96 - 3.89 (m,
4H), 3.89 (s, 3H), 3.83-3.75 (m, 4H); 3C NMR (101MHz, CDCl;) 6 157.4, 153.1, 137.2, 120.2, 119.7, 114.2, 112.9,
112.2,109.5, 106.3, 67.0, 55.7, 48.7; HRMS (ESI) m/z: [M+H*] Calcd for C;¢H3N;0, 284.1394; found 284.1399

4-(7-(Trifluoromethyl)pyrrolo[1,2-a]quinoxalin-4-yl)morpholine (6k)
oy
FaC NTONTY
Lo
Compound 6k was prepared in accordance with the general procedure for the synthesis of pyrrolo[1,2-a]Jquinoxaline
derivatives and purified by flash chromatography on silica gel (Biotage®, gradient elution: 2—20% EtOAc in n-hexane)

as a yellow solid (33 mg, 52% yield, M.P. 164-165 °C). '"H NMR (400 MHz, CDCl;) § 7.98-7.90 (m, 1H), 7.85 (dd, J =
1.3,2.7 Hz, 1H), 7.80 (d,J= 8.5 Hz, 1H), 7.49 (dd, J= 1.5, 8.5 Hz, 1H), 6.89-6.73 (m, 2H), 3.93-3.87 (m, 4H), 3.87-3.82
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(m, 4H); BC NMR (101MHz, CDCl;) 6 153.0, 136.1, 127.8, 127.5, 127.2, 124.8, 120.3-120.0, 115.2, 113.8, 113.3,

107.8, 66.9, 48.3; HRMS (ESI) m/z: [M+H"] Calcd for C,sH;5F3N;0 322.1162; found 322.1165

4. Synthesis of compound 3a (2 mmol scale)
The mixture of compound 1a (336 mg, 2mmol, 1.0 equiv.), morpholino benzoate (829 mg, 4 mmol, 2.0 equiv.),
Cu(OAc), (74 mg, 0.4 mmol, 0.2 equiv.), and Et;N (0.56 mL, 4 mmol, 2.0 equiv.) in dichloroethane (20 mL, 0.1 M)
was heated to 100 °C and stirred for 3 h. The reaction mixture was diluted with EtOAc, and then the solution was
washed with a saturated solution of NaHCOs; and brine. The organic phase was dried over Na,SO,, and the product
was purified by column chromatography on silica gel (n-hexane/EtOAc) to afford the title compound as a colorless

foam (984 mg, 75% yield).
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6. "TH NMR and 3C NMR spectra of all new product
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Figure S38. (a) 'H NMR (400 MHz, CDCl;) and (b) '*C NMR (101 MHz, CDCl;) spectra of 6h
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