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Fig. S1 Fourier Transform infrared spectrum of 1.
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Fig. S4 FT-IR spectrum of 2.
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Fig. S5 'H NMR spectra of 2 in CDCl; a) Full spectrum and b) Aromatic region.
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Table S1 Crystallographic data for 1 and 2.

Crystallographic data

Empirical formula
CCDC No.
Molecular weight
Temperature (K)
Crystal system
Space group

z

a(A)

b (A)

c(A)

a (%)

B(°)

Y (°)

Volume (A3)

Peaied (CM®)

M (mmT)

F(000)

Reflections collected

Independent reflections

S8

CsH13N3
2433822
235.28
150.00(10)
orthorhombic

Pbca

11.9662(4)
7.4448(3)
26.0051(9)
90
90
90
2316.69(15)
1.349
0.083
992.0
22431

3121

2(C4gH14CIN3O3 5Re)

2433551
1099.94
100.00(2)
orthorhombic
Pca2,

4
7.4384(3)
15.5722(6)
29.4061(11)
90
90
90
3406.2(2)
2.145
7.320
2104.0
45010

8332
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Data/restraints/parameters 3121/0/165 8332/1/486

Ri/ wR; 0.0406/ 0.1222 0.0272/ 0.0613
Goodness of fit on F?2 1.049 1.188
Largest diff. peak/hole (eA-3) 0.34/-0.20 1.59/-1.97

Fig. S7 The unit cell of 1.
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Figure S9. Packing diagram of 2 as viewed along the c axis. Hydrogen bonds are indicated
using teal dotted lines.

Table S2 Selected bond lengths and angles of 1 and 2.

1 2
Experimental (A/°) Thec;\r/etical Experimental (A/°) Theoretical (A/°)
C1-C2 =1.483(1) 1(.48%3 Re1A-N1A =2.171(7) 2.16308
C2-C3 =1.429(1) 1.426 Re1A-N2A = 2.213(6) 2.20714
N1-C1=1.341(1) 1.339 Re1A-CIMA =2.501(2) 2.54677
N2-C2 =1.319(1) 1.316 Re1A-C1A = 1.934(9) 1.92970
N3-C3 =1.314(1) 1.310 Re1A-C2A = 1.916(8) 1.92038
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C1-C10 = 1.394(1) 1.399 Re1A-C3A = 1.935(10) 1.91115
C6-C6A1 = 1.507(1) C1A-02 = 1.135(11) 1.18526
C2A-0O1 = 1.139(10) 1.18648
C2-N2-C9 = 116.53(9) 117.30 C3A-03 = 1.130(12) 1.19228
C3-N3-C4 = 116.05(9) 116.68 Re1B-N1B = 2.155(7) 2.16308
C13-N1-C1 = 117.26(9) 118.14 Re1B-N2B = 2.225(6) 2.20714
N2-C2-C1 = 117.89(9) 118.58 Re1B-CI1B = 2.502(2) 254677
Re1B-C1B = 1.931(9) 1.92970
Re1B-C2B = 1.906(8) 1.92038
Re1B-C3B = 1.907(9) 1.91115
C1B-06 = 1.125(11) 1.18526
C2B-08 = 1.146(10) 1.18648
C3B-07 = 1.159(11) 1.19228

N1A-Re1A-CHA = 84.81(19) 170.75

N1A-Re1A-N2A = 74.7(3) 75.38

N2A—Re1A-CI1A = 83.43(16) 101.33

C2A-Re1A-CI1A = 93.0(3) 87.94

C2A-Re1A-N1A = 94.6(3) 9451

C2A-Re1A-N2A = 169.0(3) 168.88

C1A-Re1A-N2A = 105.6(3)
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Fig. S10 Theoretical infrared spectra of 1 and 2 obtained at B3LYP/6-311+G(2d,p) and

B3LYP/LANL2DZ level of theories.

Table S3 Atomic coordinates of the optimized structure of ligand 1

Center Atomic Atomic type Coordinates (A)
number* number X Y z
1 6 0 -3.730712 -0.355222 -0.026148
2 6 0 1.198762 -0.348394 -0.057508
3 6 0 2.650351 -0.017714 -0.015388
4 6 0 -1.970818 1.304871 0.171449
5 1 0 -1.627485 2.324874 0.298536
6 7 0 3.031191 1.133381 -0.584361
7 7 0 0.326401 0.628973 0.069353
8 6 0 -1.405094 -1.049911 -0.138108
9 6 0 -0.987212 0.298246 0.032446
10 6 0 -3.311319 1.006166 0.146159
11 6 0 -2.785791 -1.343611 -0.163283
12 1 0 -3.077111 -2.379073 -0.296448
13 6 0 -5.19708 -0.698074 -0.058787
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14 1 0 -5.699352 -0.403423 0.867272
15 1 0 -5.343664 -1.769464 -0.194892
16 1 0 -5.711475 -0.181245 -0.874333
17 6 0 3.562195 -0.881309 0.600912
18 1 0 3.221975 -1.794029 1.073248
19 7 0 -0.490942 -2.045676 -0.280573
20 6 0 432274 1.450813 -0.554813
21 1 0 4.592789 2.389128 -1.030652
22 6 0 0.770766 -1.696165 -0.239058
23 1 0 1.503469 -2.485886 -0.375336
24 6 0 5.301322 0.655765 0.035649
25 1 0 6.338398 0.967204 0.029579
26 6 0 4.906163 -0.535701 0.627343
27 1 0 5.629488 -1.183867 1.107805
28 6 0 -4.335657 2.10029 0.297683
29 1 0 -4.999645 2.151504 -0.570055
30 1 0 -3.85411 3.071476 0.410476
31 1 0 -4.971518 1.935757 1.172567
Rotational constants (GHz) 1.369638 0.196299 0.175137
Table S4 Atomic coordinates of the optimized structure of ligand 2
Center Atomic Atomic type Coordinates (A)
number* number X Y z
1 75 0 -0.927482 -0.862354 -0.005245
2 17 0 -1.116605 -0.088304 -2.424155
3 8 0 -3.400532 -2.71325 -0.331536
4 8 0 0.857471 -3.209325 -1.008211
5 8 0 -0.621924 -1.64799 2.981512
6 6 0 4.783208 0.603943 0.037964
7 6 0 -0.739287 -1.347277 1.83376
8 6 0 0.191655 -2.315432 -0.605126
9 6 0 -0.027051 2.022376 0.025512
10 6 0 -1.487568 2.104785 0.179164
11 6 0 -2.436874 -2.031575 -0.21144
12 6 0 2.614606 -0.514083 0.329702
13 1 0 2.043745 -1.40497 0.548174
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14 7 0 -2.126595 0.902379 0.350818
15 7 0 0.532906 0.788125 0.115883
16 6 0 2.705053 1.899185 -0.103365
17 6 0 1.923275 0.706058 0.110423
18 6 0 4.004262 -0.585801 0.299231
19 6 0 4.122194 1.811971 -0.148363
20 1 0 4.666788 2.733646 -0.328728
21 6 0 6.294576 0.535013 -0.020508
22 1 0 6.71747 0.178264 0.928683
23 1 0 6.72726 1.517061 -0.234858
24 1 0 6.631987 -0.161046 -0.800393
25 6 0 -2.205245 3.316743 0.209421
26 1 0 -1.695295 4.261924 0.069357
27 7 0 2.109861 3.133255 -0.259014
28 6 0 -3.469167 0.887974 0.567319
29 1 0 -3.930643 -0.08245 0.696041
30 6 0 0.784072 3.183298 -0.170036
31 1 0 0.329322 4.161401 -0.274919
32 6 0 -4.233005 2.060195 0.611045
33 1 0 -5.302154 1.99614 0.781839
34 6 0 -3.59024 3.297282 0.42151
35 1 0 -4,154843 4.224562 0.440537
36 6 0 4.694405 -1.912787 0.535372
37 1 0 5.287404 -2.211936 -0.339807
38 1 0 3.969691 -2.707611 0.733543
39 1 0 5.386193 -1.860263 1.3871
Rotational constants (GHz) 0.2565712 0.1411797 0.1081313
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b)

Fig. S11 The local minimum structures of a) 1 and b) 2 calculated at B3LYP/6-311+G(2d, p)
and B3LYP/LANL2DZ level of theory, respectively.
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Fig. S12 Electronic absorption spectrum of 1 in acetonitrile.
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Table S5 Computed excitation energies (eV), electronic transition configurations and
oscillator strengths (f) of 1 at B3LYP/6-311+G(2d,p) and CAM-B3LYP/6-311+G(2d,p) level of
theories (selected, f> 0.1) (Selected)

Ener Wavelength . _—
_ffy g f Major contributions

(cm™) (nm)
v’ B3LYP/6-311+G(2d,p)

30432 328 0.1619 HOMO—->LUMO (86%)

31425 318 0.3134 HOMO-1->LUMO (78%)

37403 267 0.4218 HOMO-4->LUMO (27%), HOMO—->LUMO+1 (43%)

41289 242 0.1218 HOMO-1->LUMO+1 (58%)

49540 201 0.3976 HOMO-1->LUMO+3 (25%), HOMO-1->LUMO+4 (31%)
v CAM-B3LYP/6-311+G(2d,p)

33296 300 0.4991 HOMO->LUMO (81%)

40628 246 0.7047 HOMO-3-LUMO (21%), HOMO—->LUMO+1 (51%)

45104 221 0.1994 HOMO-1->LUMO+1 (51%)

50740 197 0.2625 HOMO—->LUMO+4 (35%), HOMO—->LUMO+6 (33%)

56454 177 0.1481 HOMO-6->LUMO+1 (22%), HOMO-5->LUMO+2 (31%)
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Fig. S13 Theoretical electronic spectra of 1 obtained at both B3LYP/6-311+G(2d,p) and CAM-
B3LYP/6-311+G(2d,p) levels of theory in comparison to the experimental one in the same

solvent (DMSO).
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Table S6 Computed excitation energies (eV), electronic transition configurations and
oscillator strengths (f) of 2 at B3LYP/LANL2DZ and CAM-B3LYP/LANL2DZ level of theories
(selected, f > 0.1, except for the lowest energy transitions) (Selected)

Enerfy Wavelength f Major contributions
(cm™) (nm)

v" B3LYP/LANL2DZ
19519 512 0.0019 HOMO-LUMO (99%)
21305 469 0.0712 HOMO-1->LUMO (98%)
23531 424 0.0052 HOMO-2->LUMO (94%)
25892 386 0.0264 HOMO-3->LUMO (79%)
27747 360 0.3492 HOMO-4->LUMO (75%)
31252 319 0.0684 HOMO-1->LUMO+1 (85%)
32121 311 0.0694 HOMO—->LUMO+2 (68%)
36116 276 0.1943 HOMO-8->LUMO (38%), HOMO-3->LUMO+1 (31%)
39205 255 0.2102 | HOMO-4->LUMO+1 (25%), HOMO-4-LUMO+2 (26%)

v" CAM-B3LYP/LANL2DZ
24724 404 0.0011 HOMO->LUMO (96%)
26183 381 0.1088 HOMO-1->LUMO (96%)
28461 351 0.0084 HOMO-2->LUMO (85%)
30122 331 0.2043 HOMO-3->LUMO (81%)
30834 324 0.3152 HOMO-4->LUMO (89%)
38283 261 0.1227 HOMO-6->LUMO (23%)
39342 254 0.2125 HOMO-3->LUMO+1 (20%)
40483 247 0.2102 HOMO->LUMO+2 (35%)
43125 231 0.1802 HOMO-8->LUMO (23%)
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Fig. S14 Electronic absorption spectrum of 1 in dichloromethane.
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Fig. S15 Electronic absorption spectra of 2 in solvents of different polarities and hydrogen
bond tendency (cutoff of the solvents are considered in the drawing of the electronic

spectra).
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Fig. $16 Theoretical electronic spectra of 2 obtained at both B3LYP/LANL2DZ and CAM-
B3LYP/LANL2DZ level of theories.

S22



LC-MS (Synapt) Facility UP, Chemistry Dept.
20261126_Frikkie_FML1_p 70 (0.407) (a) 1: TOF MS ES+
100. 236.1204 a 177e7

%

237.1216 357.2091

360.2046
0 , S - , Al ‘ . ; . : S ; ‘ . , , . m/z
100 200 300 400 500 600 700 800 900 1000 1100
LC-MS (Synapt) Facility UP, Chemistry Dept.
20251126_Frikkie_FMCI_p 65 (0.380) 1: TOF MS ES+
X6 1.01e7
100
322.3095
& 547.0779
545.0773
323.3062
548.0796
506.?499 ‘ (564-0136 706.5964
L, 1 Al A by 1

| ey o | | | ; ; | . | T . . — T . f ; —m/z
325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825

523



Fig. $17 HR-MS of 1 (a) and 2 (b).
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