

Supporting Information

An enzymatically amplified electrochemical sensor for the sensitive and label-free monitoring of uranyl ions in environmental waters

Xutao Xu ^{a, b}, Zhangkun Wu ^{a, b}, Wenqi Tang ^c, Yihan Pang ^{a, b}, Siru Liu ^{a, b}, Guoqin Qin^{a, b}, Yonghong Wang ^d, Shengyuan Yang ^{a, b *}, Jinquan Liu ^{a, b, *}

^a *School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.*

^b *Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China.*

^c *School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.*

^d *College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China.*

*Corresponding Author: Shengyuan Yang and Jinquan Liu; E-mail addresses: yangshyhy@126.com (Shengyuan Yang) and letliufly@163.com (Jinquan Liu)

Table S1 Comparison of the proposed sensor with other UO_2^{2+} detection methods.

Material	Method	LOD (M)	Linear range(M)	Reference
CPE	Colorimetric	2.10×10^{-9}	1.26×10^{-8} - 1.05×10^{-6}	[1]
$\text{Fe}_3\text{O}_4@\text{SiO}_2$	Electrochemical	1.08×10^{-9}	1.00×10^{-9} - 2.00×10^{-7}	[2]
PeNCs@NHS-M	Electrochemical	1.00×10^{-9}	3.00×10^{-9} - 2.00×10^{-5}	[3]
Ln-MOFs	Fluorescence	2.70×10^{-9}	1.00×10^{-8} - 1.00×10^{-4}	[4]
TPE-A	Fluorescence	4.70×10^{-9}	5.00×10^{-8} - 4.50×10^{-7}	[5]
SC4A@ Tb^{3+}	Fluorescence	8.40×10^{-8}	0.00 - 3.60×10^{-7}	[6]
TEA-CDs	Fluorescence	2.04×10^{-8}	0.00 - 5.00×10^{-4}	[7]
DNAzymes	Electrochemical	4.18×10^{-11}	7.00×10^{-11} - 1.50×10^{-9}	this work

The calculation method for recovery rate

The recovery for spiked samples was calculated using the standard formula:

$$\text{Recovery (\%)} = \frac{M_{a+spike} - M_a}{M_{spike}}$$

Where : $M_{a+spike}$ represents the concentration of the known standard added to the sample; M_a represents the concentration of the analyte in the raw, unspiked sample as measured using this sensor; M_{spike} is the concentration of the known standard added to the sample.

References

- [1] A. B. Abdallah, A. M. Youins and M. R. El-Kholany, Selective separation of uranyl ions from some lanthanide elements using a promising β -enaminoester ligand by cloud point extraction, *RSC advances*, 2022, **12**, 8520-8529.
- [2] L. He, Z. Wang, Y. Li, J. Yang, L. Liao, X. Xiao and Y. Liu, A Novel Electrochemical Sensor Modified with a Computer-Simulative Magnetic Ion-Imprinted Membrane for Identification of Uranyl Ion, *Sensors (Basel, Switzerland)*, 2022, **22**, 4410.
- [3] Y. Cai, Q. Luo, J. Qi, X. Chen, J. Liu, L. Zhang, R. Liang and J. Qiu, Hydrogen-

Bonded Organic Cocrystal-Encapsulated Perovskite Nanocrystals as Coreactant-Free Electrochemiluminescent Luminophore for the Detection of Uranium, *Analytical chemistry*, 2024, **96**, 3553-3560.

- [4] Y. Tong, L. Yu, X. Gong, L. Wu, Y. Chen, D. Wang and G. Ouyang, On-Site Ratiometric Analysis of UO_2^{2+} with High Selectivity, *Analytical chemistry*, 2024, **96**, 3070-3076.
- [5] H. Ding, C. Li, H. Zhang, N. Lin, W. Ren, S. Li, W. Liu, Z. Xiong, B. Xia and C. Wang, A simple fluorescent sensor for highly sensitive detection of UO_2^{2+} , *Chinese Chemical Letters*, 2023, **34**, 107725.
- [6] X. Zhou, M. Gong, L. Xiong, Y. Wang, W. Jiang, J. Song and L. Li, Sensitive fluorescent determination of uranyl ions using a terbium (III) 4-sulfocalix[4]arene probe, *Journal of Radioanalytical and Nuclear Chemistry*, 2024, **333**, 1263-1274.
- [7] Q. Wang, H. Zhang, D. Yu, W. Qin and X. Wu, Ultra-sensitive and stable N-doped carbon dots for selective detection of uranium through electron transfer induced $\text{UO}_2^{+}(\text{V})$ sensing mechanism, *Carbon*, 2022, **198**, 162-170.