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Figure S1. Synthetic route of PLA-b-PS precursor.

Figure S2. 1H NMR spectrum of PLA156-b-PS250 diblock copolymer (500 MHz, 

CDCl3).
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Figure S3. GPC traces of (a) PLA70-b-PS100 and (b) PLA156-b-PS250 diblock copolymer.

Figure S4. FTIR of (a) hyper-crosslinking PLA150-PS250 and (b) PLA150-PS250-N4.
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Figure S5. TGA curves of PLA150-PS250-N4.

Figure S6. TEM image of PLA150-PS250-N4 precursors by directly pyrolysed at 900 oC 

without any pre-carbonization process under heating rate of 5 oC.
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Figure S7. TEM of (a) PLA150-PS250-N4-700-10H; (b) PLA150-PS250-N4-800-10H; (c) 

PLA150-PS250-N4-900-5H; (d) PLA150-PS250-N4-900-20H.

Figure S8. N 1S spectra of PLA150-PS250-N4.
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Figure S9. BET of (a) PLA150-PS250-N4-700-10H; (b) PLA150-PS250-N4-800-10H; (c) 

PLA70-PS100-N4-900-10H; (d) PS250-N4-900-10H; (e) PLA150-PS250; (f) PLA150-PS250-

900-10H; (g) PLA150-PS250-N4; (h) PS250-N4. 
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Figure S10. Galvanostatic charge-discharge curve under density of 1.0 A g-1.

Table S1. Relative contents of various N configurations in samples at different 

calcination temperatures.

Calcination temperature (℃)
Pyridinic N (N-

6) (%)

Pyrrolic N (N-

5) (%)

Graphitic N 

(N-Q) (%)

700 25 54 21

800 23 50 27

900 13 24 63
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Figure S11. The dual-electrode system electrochemical test of PLA150-PS250-N4-900-

10H. (a) CV curves at different sweep rates; (b) galvanostatic charge-discharge curves 

under various current densities; (c) charge specific capacitance at different current 

densities; (d) discharge specific capacitance at different current densities.

Figure S12. The three-electrode system electrochemical test of PLA150-PS250-N4-900-

10H. (a) electrochemical impedance spectra; (b) comparison of energy density ragone 

plots.
Table S2. Comparison of electrochemical performance of various carbon materials.
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