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Figure S1. Synthetic route of PLA-b-PS precursor.

o]

S
e 0. 523
@/\o@\nao ¢ ;Ls CyiHas

ctd

7 4 7.0 6.5 6.0 5.5 5.0 4.5 4.0 . 3.5 3.0
3(ppm)

Figure S2. 'H NMR spectrum of PLA;ss-b-PSys0 diblock copolymer (500 MHz,
CDCly).
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Figure S3. GPC traces of (a) PLA7y-b-PS;(o and (b) PLA54-b-PS;5, diblock copolymer.
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Figure S4. FTIR of (a) hyper-crosslinking PLA 50-PS;,50 and (b) PLA50-PS»50-Na.
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Figure S5. TGA curves of PLA50-PSy50-Na.

Figure S6. TEM image of PLA5,-PS,50-N, precursors by directly pyrolysed at 900 °C

without any pre-carbonization process under heating rate of 5 °C.
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Figure S7. TEM of (a) PLA 50-PS150-N4-700-10H; (b) PLA 50-PS550-N4-800-10H; (c)
PLA150-PS250-N4-900-5H; (d) PLA150-P8250-N4-900-20H.
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Figure S8. N 1S spectra of PLA50-PS;50-Ny.
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Figure S9. BET of (a) PLA150-P8250—N4—700—10H; (b) PLA150-PSZ50—N4—800—10H; (C)
PLA7()'PS]00-N4-900-10H; (d) PSzSO-N4-9OO-10H; (e) PLAISO'PSZSO; (f) PLA150-P8250-
900-10H; (g) PLA 50-PS250-Ny; (h) PSy50-Na.
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Figure S10. Galvanostatic charge-discharge curve under density of 1.0 A g-'.

Table S1. Relative contents of various N configurations in samples at different

calcination temperatures.

Pyridinic N (N- Pyrrolic N (N- Graphitic N
Calcination temperature (°C)
6) (%) 5) (%) (N-Q) (%)
700 25 54 21
800 23 50 27
900 13 24 63
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Figure S11. The dual-electrode system electrochemical test of PLA 50-PS;50-N4-900-

10H. (a) CV curves at different sweep rates; (b) galvanostatic charge-discharge curves

under various current densities; (c) charge specific capacitance at different current

densities; (d) discharge specific capacitance at different current densities.
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Figure S12. The three-electrode system electrochemical test of PLA 50-PS;50-N4-900-

10H. (a) electrochemical impedance spectra; (b) comparison of energy density ragone

plots.

Table S2. Comparison of electrochemical performance of various carbon materials.



Sample N content (%) Specific capacitance Cycling Ref.
(Fgh
NHCSs 7.2 122 (0.5 A/g) 94% (1000) 1
PNHCS 6.7 213 (0.5 A/g) 91% (5000) 2
NPC900 22 230 (0.5 A/g) ~98% (1500) 3
NONCs 4.5 186 (0.5 A/g) 93% (5000) 4
N-OMC 11.6 216 (0.1 A/g) 100% (10000) 5
HCNs 2.6 203 (0.1 A/g) ~98% (5000) 6
N-CNFs-900 7.2 202 (1.0 A/g) 97% (3000) 7
N-S-CNF-700 4.4 220 (0.1 A/g) ~90% (1000) 8
N-OMCS 5.3 288 (0.1 A/g) ~98% (25000) 9
HCNs 0 203 (0.1 A/g) 98% (5000) 10
CMCF 3.2 218 (1.0 A/g) 94.7% (20000) 11
CPC-FeZn 0 256 (0.1 A/g) 94% (5000) 12
CHN,5-700 0 189 (0.1 A/g) 94.9% (10000) 13
HPC-5 0 359 (0.5 A/g) 92% (10000) 14
HPCNF-6 1.2 343 (0.5 A/g) 92% (10000) 15
N-HPCNSs 3.57 250 (1.0 A/g) ~98% (5000) This
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