Supplementary material

NiCoP/g-C₃N₄ Nanocomposites for Efficient Photocatalytic Hydrogen

Production from Seawater

Zhufeng Lu^{a,b†}, Qiaoyi Xiao^{a,d†}, Yangjie Zhou^a, Li Zhou^a, Qiqi Gu^a, Yuan Lian^{a,d}, Hongmei Wang^{a,*}, Siqian Zhang^a, Xiao Wang^{c,*}

1. Experimental

1.1 Synthesis of g-C₃N₄

A mixture of 5.0 g melamine and 1.0 g ammonium oxalate monohydrate was thoroughly ground to ensure uniform blending. The resulting mixture was placed in an alumina crucible and heated in static air at a ramp rate of 3 °C/min to 550 °C, where it was maintained for 4 h. After thermal treatment, a yellow bulk precursor was obtained, which was then ground into a fine powder and transferred into a 150 mL beaker. Deionized water was added, and the suspension was subjected to ultrasonic treatment for 7 h to yield well-dispersed g-C₃N₄ nanosheets. The resulting suspension was subsequently washed three times with distilled water and absolute ethanol to remove unreacted species and exfoliation residues. Finally, the suspension was dried at 70 °C for 12 h to obtain the g-C₃N₄ nanosheets.

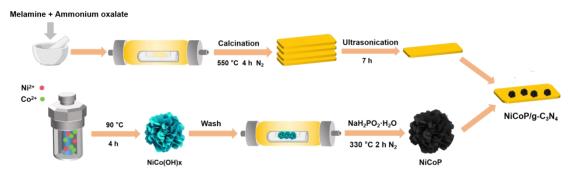


Figure S1 The synthesis route of NiCoP/g-C₃N₄ Nanocomposites.

^a College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China

^b Analytical & Testing Center, Jiaxing University, Jiaxing 314001, China

^c School of Physics, East China University of Science and Technology, Shanghai 200237, China

^d College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China

^{*} Corresponding author: (E-mail: hongmei256@163.com (H. Wang); laricswang@ecust.edu.cn (X. Wang))

[†] These authors contributed equally to this work.

1.2 Characterization of NiCoP/g-C₃N₄ nanocomposites

The crystal structure of the samples was analyzed using X-ray powder diffraction (XRD, Shimadzu XRD-7000). The surface elemental composition and chemical states were investigated by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific Nexsa G2). The surface morphology of the samples was observed using a scanning electron microscope (SEM, Hitachi S-4800), while the microstructure and detailed morphology were further examined by high-resolution transmission electron microscopy (HRTEM, Thermo Scientific Talos F200X). The optical absorption properties of the NiCoP/CNN nanocomposites were evaluated using UV–visible diffuse reflectance spectroscopy (UV–vis DRS, Cary 5000). The separation efficiency of photogenerated charge carriers was characterized by photoluminescence spectroscopy (PL, F-4700) and time-resolved photoluminescence spectroscopy (TRPL, Edinburgh FLS98).

1.3 Photoelectrochemical performance measurement of NiCoP/g-C₃N₄ Nanocomposites

The photoelectrochemical (PEC) performance of the samples was evaluated using a CHI-660E electrochemical workstation (Shanghai Chenhua) in a standard three-electrode configuration. A platinum wire was used as the counter electrode, an Ag/AgCl electrode as the reference electrode, and fluorine-doped tin oxide (FTO) glass coated with the photocatalyst served as the working electrode. The electrolyte consisted of 0.1 M Na₂SO₄ aqueous solution. A 300 W xenon (Xe) lamp equipped with a UV cut-off filter (λ > 400 nm) was used as the light source. To prepare the working electrode, 5.00 mg of the sample was ultrasonically dispersed in a mixed solution containing 800 µL isopropanol, 200 µL deionized water, and 40 µL Nafion solution to form a homogeneous suspension. The resulting suspension was then uniformly drop-cast onto the surface of FTO glass (effective area ~2 cm²) and dried at room temperature prior to PEC measurements.

1.4 Calculation of apparent quantum efficiency (AQE) of hydrogen evolution

The apparent quantum efficiency (AQE) of H_2 evolution was investigated under different monochromatic lights ($\lambda = 420, 450$ and 550 nm). It was calculated by the following equation.

$$AQE = \frac{2 \times Number of evolved H_2 molecules}{Number of incident photons} \times 100\%$$

2. Results and Discussion

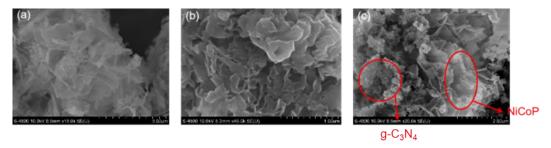


Figure S2 SEM images: (a) NiCoP; (b) g-C₃N₄; (c) NiCoP/g-C₃N₄.

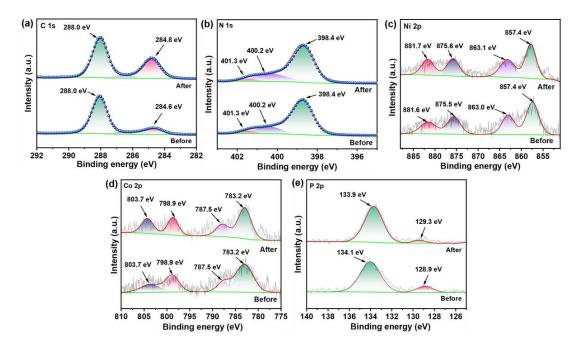


Figure S3 XPS high resolution spectra of fresh and used 20% NiCoP/g-C₃N₄ heterojunction:

(a) C 1s; (b) N 1s; (c) Ni 2p; (d) Co 2p; (e) P 2p.

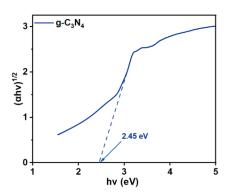


Figure S4 The band gap of g-C₃N₄.

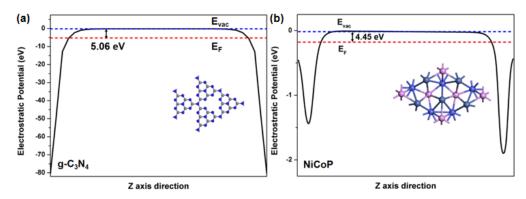


Figure S5 The work function of (a) g-C₃N₄ and (b) NiCoP.

Table S1 Comparison of the H₂ revolution rates with other photocatalysts.

	•				
Photocatalysts	Light source	Sacrificial reagent	Seawater source	H ₂ evolution rate (μmol·g ⁻¹ ·h ⁻¹)	Refs.
NiCoP/g-C ₃ N ₄	300 W Xe lamp (λ≥400 nm)	10 vol.% TEOA	NSW	1290.0	Our work
NiCoP/g-C ₃ N ₄	300 W Xe lamp $(\lambda \ge 400 \text{ nm})$	10 vol.% TEOA	3 wt% NaCl	1827.4	Our work
ZCS/CNN	300 W Xe lamp $(\lambda \ge 400 \text{ nm})$	10 vol.% TEOA	ASW	726.5	[1]
CCTO/CNT	420 W Xe lamp	4 vol.% TEOA	Seawater	580	[2]
H-CoS/CdS	λ ≥ 420 nm	$Na_2S + Na_2SO_3$	ASW	143.1	[3]
Fe ₂ O ₃ /C-TiO ₂	300 W Xe lamp (λ≥420 nm)		NSW	170.8	[4]
Z-scheme Na ₂ Ti ₃ O ₇ /Ag/ CdS	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	$Na_2S + Na_2SO_3$	ASW	1793	[5]
CNv-mCN-Br	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	TEOA + 1 wt% Pt	ASW	34.4	[6]
In ₂ S ₃ /In ₂ O ₃ nanosheets	5 W Blue-LED light $(\lambda = 420 \text{ nm})$	0.1 M L-ascorbic	ASW	618	[7]
Pt/o-g-C ₃ N ₄	Simulated solar light	Glucose	NSW	847	[8]
Brookite TiO ₂	Full solar spectrum		ASW	1476	[9]

Note: ASW referred to simulated seawater and NSW referred to nature seawater.

Table S2 The fitting results of the EIS spectra of pure g-C₃N₄, pure NiCoP, 20%NiCoP/g-C₃N₄ and 25%NiCoP/g-C₃N₄ nanocomposites.

Samples	Rs (Ω·cm²)	CPE-T (Ω ⁻¹ ·cm ⁻² ·s ⁻ⁿ)	CPE-P	R1 (Ω-cm ²)
g-C ₃ N ₄	26.80	4.5362×10^{-5}	0.83473	12228
NiCoP	28.36	12.1990×10^{-5}	0.81937	13321
20% NiCoP/g-C ₃ N ₄	26.62	3.8797×10^{-5}	0.83977	9128
25% NiCoP/g-C ₃ N ₄	27.59	9.1754×10^{-5}	0.85165	11553

References

- [1] Q. Xiao, Y. Fan and L. Zhou, *et al.*, Construction of bimetallic sulfide/carbon nitride nanocomposites for photocatalytic hydrogen evolution from simulated or natural seawater, *J. Photoch. Photobio. A*, 2026, **472**, 116810.
- [2] N. Chanda, B. Jaksani and S. Saha, *et al.*, CaCu₃Ti₄O₁₂/CNT nanocomposite for enhanced photocatalytic seawater splitting to hydrogen generation, *Int. J. Hydrogen Energ.*, 2025, **140**, 36-44.
- [3] S. Liu, Y. Ma and D. Chi, *et al.*, Hollow heterostructure CoS/CdS photocatalysts with enhanced charge transfer for photocatalytic hydrogen production from seawater, *Int. J. Hydrogen Energ.*, 2022, **47**, 9220-9229.
- [4] Y. Yang, L. Liu and Q. Qi, *et al.*, A low-cost and stable Fe₂O₃/C-TiO₂ system design for highly efficient photocatalytic H₂ production from seawater, *Catal. Commun.*, 2020, **143**, 106047.
- [5] G. Xiong, S. Shen and S. Xiao, *et al.*, Well-defined Z-scheme Na₂Ti₃O₇/Ag/CdS multidimensional heterojunctions with enhanced H₂ production from seawater under visible light, *Int. J. Hydrogen Energ.*, 2022, 47, 30503-30516.
- [6] M. Guo, M. Chen and J. Xu, *et al.*, C, N-vacancies and Br dopant co-enhanced photocatalytic H₂ evolution of g-C₃N₄ from water and simulated seawater splitting, *Chem. Eng. J.*, 2023, **461**, 142046.
- [7] Y. R. Lin, Y. C. Chang and F. H. Ko. One-pot microwave-assisted synthesis of In₂S₃/In₂O₃ nanosheets as highly active visible light photocatalysts for seawater splitting, *Int. J. Hydrogen Energ.*, 2024, **52**, 953-963.
- [8] A. Speltini, A. Scalabrini and F. Maraschi, *et al.*, Improved photocatalytic H₂ production assisted by aqueous glucose biomass by oxidized g-C₃N₄, *Int. J. Hydrogen Energ.*, 2018, **43**,

14925-14933.

[9] J. Zhang, Y. Lei and S. Cao, *et al.*, Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO₂ nanoparticles, *Nano Res.*, 2022, **15**, 2013-2022.