

Electronic Supplementary Information

Carbon coated Ni/Al₂O₃ as high-efficiency catalysts for hydrogenation of furfural to furfuryl alcohol

Meng Ge,^{a,b} Xin Ling,^{a,b} Yanyan Liu,^{a,b*} Weiwei Lin^{a,b*}

^aAnhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China.

E-mail: linweiwei@ahpu.edu.cn.

^bSchool of chemical and environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China. E-mail: liuyanyan@ahpu.edu.cn.

Chemicals

Ni(NO₃)₂·6H₂O (AR), Al(NO₃)₃·9H₂O (AR), ethanol (AR, 97.0%), glucos (AR), furfural (AR, 99.0%), furfuryl alcohol (AR, 98%), tetrahydrofurfuryl alcohol (AR, 98%), 2-methylfuran (AR, 98%), n-butanol (AR, 99.5%), isopropanol (AR), methylbenzene (AR), n-hexane (AR) and dioxane (AR) were purchased from Sinopharm Group Chemical Reagent Co. Ltd. They were all used directly.

Catalysts characterization

The crystal structure of the samples was analyzed by SHIMADZU LabXRD-6100 X-ray diffractometer with a Cu-K α source ($\lambda = 0.154$ nm). The test was conducted with a tube voltage of 40 kV and a tube current of 30 mA, with a scanning range set from 5° to 70° and a scanning rate of 4°/min. The carbon content of the catalysts was analyzed by thermogravimetric analysis (TGA) using a NETZSCH TG 209 F3 thermogravimetric analyzer. The test was performed under an air atmosphere with a temperature range of 40-700 °C and a heating rate of 10 °C per minute. The microscopic morphology of the catalyst was observed by a Hitachi FESEM SU8600 field emission scanning electron microscope. Transmission electron microscopy (TEM) was carried out using a FEI Tecnai F20 instrument at an acceleration voltage of 200 kV. For the TEM sample preparation, the catalyst was ultrasonically dispersed in ethanol for 10 min and the resulting suspension was drop-cast onto a carbon-film-coated copper grid. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was conducted on the Thermal Fisher Spectra 300 with an acceleration voltage of 300 kV. X-ray photoelectron spectroscopy (XPS) analysis was conducted using a Thermo Fisher Escalab 250Xi spectrometer with an Al-K α X-ray source. The working voltage and current were 14.8 kV and 4.5 mA, respectively. Ar⁺ ion etching was carried out before the test and the C 1s peak (284.8 eV) of adventitious carbon was used as the reference. The specific surface area, pore volume and average pore diameter were determined by Brunauer-Emmett-Teller (BET) adsorption

measurements on a Micromeritics TriStar II 3020 analyzer. ICP-OES measurements were performed on an Agilent 720ES spectrometer with a radio frequency (RF) power of 1200 W and a nebulizer flow rate of 0.75 L/min.

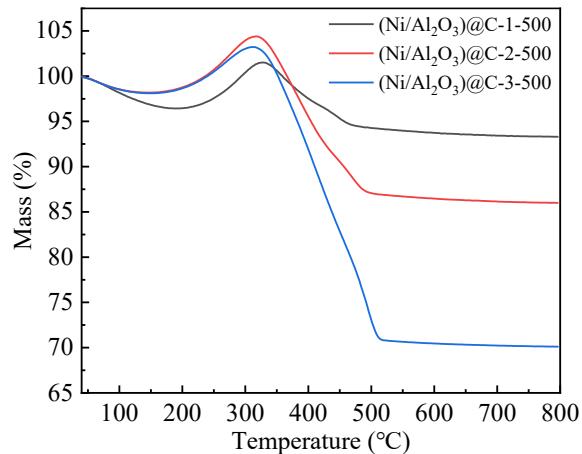


Fig. S1 TGA curve of the carbon coated Ni/Al₂O₃ catalysts.

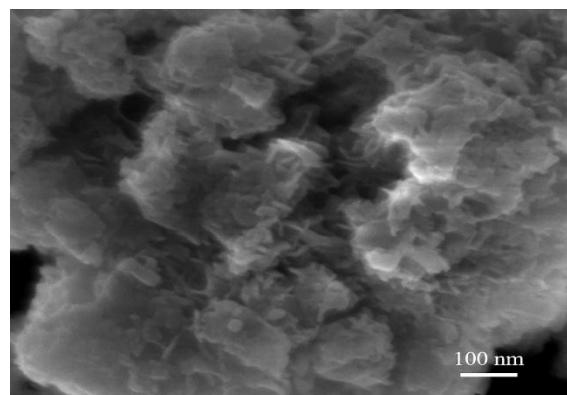


Fig. S2 SEM image of the Ni₂Al-LDH

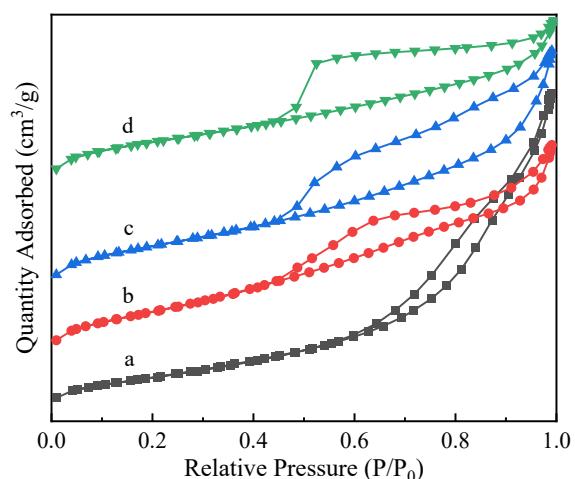


Fig. S3 N₂ adsorption-desorption isotherms of Ni/Al₂O₃ (a), (Ni/Al₂O₃)@C-1-500 (b), (Ni/Al₂O₃)@C-500 (c), (Ni/Al₂O₃)@C-500 (d).

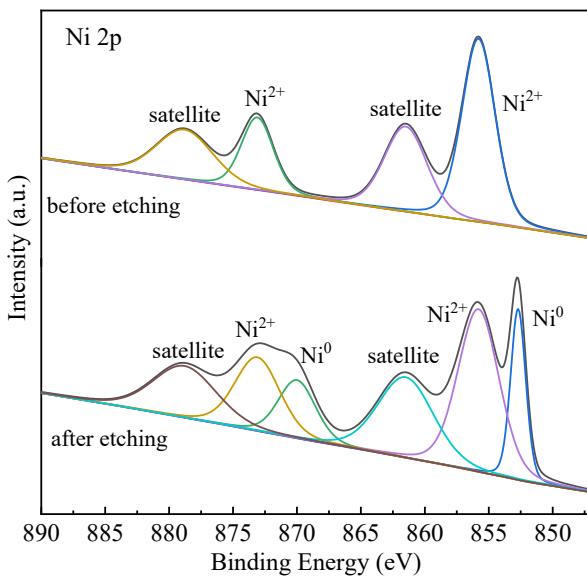


Fig. S4 XPS spectrum of Ni 2p in Ni/Al₂O₃.

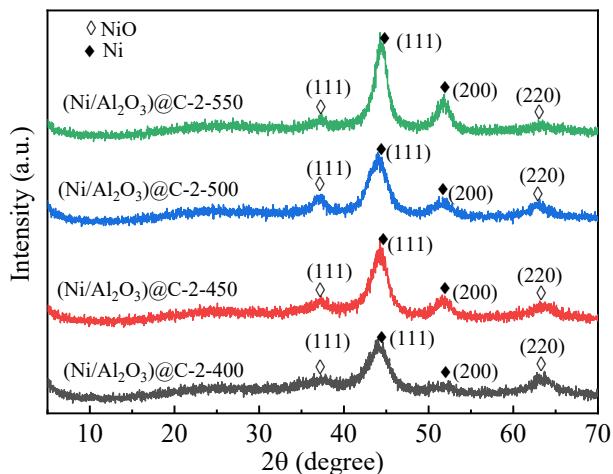


Fig. S5 XRD patterns of (Ni/Al₂O₃)@C-2 at different calcination temperatures.

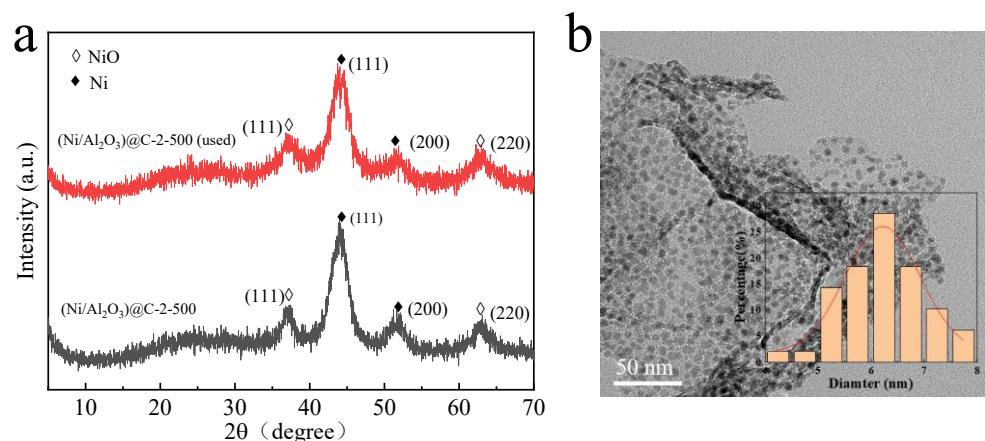
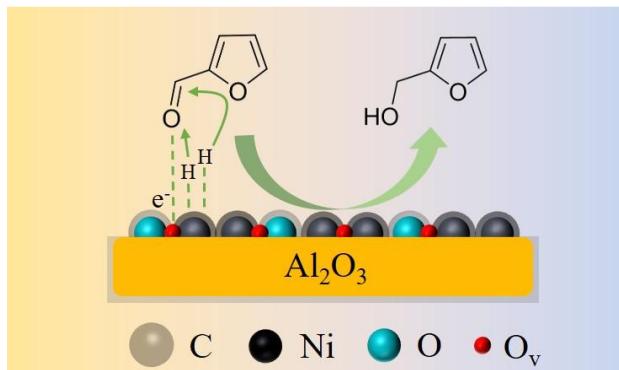



Fig. S6 (a) XRD patterns of catalyst (Ni/Al₂O₃)@C-2-500 before and after usage; (b) TEM image and particle size distributions of (Ni/Al₂O₃)@C-2-500 after usage.

Scheme S1 Proposed reaction mechanism of FF to FA over the (Ni/Al₂O₃)@C-2-500 catalyst.

Table. S1 Relative amount of Ni species as quantified by XPS spectra of Ni 2p_{3/2} in different catalysts.

Entry	Catalysts	Relative amount of Ni species (%)	
		Ni ⁰	Ni ²⁺
1	Ni/Al ₂ O ₃	0	100
2	(Ni/Al ₂ O ₃)@C-1-500	25.6	74.4
3	(Ni/Al ₂ O ₃)@C-2-500	27.1	72.9
4	(Ni/Al ₂ O ₃)@C-3-500	50.5	49.5

Table. S2 Proportions of O species as quantified by XPS spectra of O 1s in different catalysts.

Entry	Catalysts	Relative amount of O species (%)		
		O _L	O _V	O _{ads}
1	Ni/Al ₂ O ₃	51.1	24.8	24.1
2	(Ni/Al ₂ O ₃)@C-1-500	29.2	33.9	36.9
3	(Ni/Al ₂ O ₃)@C-2-500	20.0	38.0	42.0
4	(Ni/Al ₂ O ₃)@C-3-500	3.2	26.0	70.8

Table. S3 Comparison of the catalytic hydrogenation of FF to FA among (Ni/Al₂O₃)@C-2-500 and other Ni-based catalysts.

Catalysts	m _{FF} /m _{Cat.}	t/h	T/°C	Solvent	P/MPa	Con.-%	Sel.-%	Ref.
Ni/Al ₂ O ₃	1.0	1	100	Isopropanol	2	98.5	31.3	¹
Ni/TiO ₂	2.0	3	130	Dioxane	3	68.7	52.4	²
5%Ni/AC	4.0	3	130	Isopropanol	2	21.5	71.5	³
Ni/C-500	5.8	0.5	80	Ethanol	1	91.5	58.0	⁴
Ni/MgO	5.8	2	200	Isopropanol	2	97.7	94.7	⁵
NiFe ₂ O ₄	3.3	4	180	Isopropanol	0	95.0	90.0	⁶
(Ni/Al ₂ O ₃)@C-2-500	10.0	0.5	120	Water	1	96.4	89.4	This work

References

- Y. Yang, J. Ma, X. Jia, Z. Du, Y. Duan and J. Xu, *RSC Adv.*, 2016, **6**, 51221-51228.
- A. S. Rajpurohit, V. R. M. Talla, M. Jaccob, K. K. Ramaswamy and B. Viswanathan, *Sustain. Energy Fuels*, 2023, **7**, 2861-2872.
- L. J. Malobela, J. Heveling, W. G. Augustyn and L. M. Cele, *Ind. Eng. Chem. Res.*, 2014, **53**,

13910-13919.

- 4 Y. Su, C. Chen, X. Zhu, Y. Zhang, W. Gong, H. Zhang, H. Zhao and G. Wang, *Dalton Trans.*, 2017, **46**, 6358-6365.
- 5 J. Qi, Y. Ren, L. Zhang and X. Hu, *New J. Chem.*, 2023, **47**, 16828-16834.
- 6 J. He, S. Yang and A. Riisager, *Catal. Sci. Technol.*, 2018, **8**, 790-797.