

Supporting information

A novel electrochemical sensor based on $P_2W_{15}V_3@$ CNTs composite for the sensitive determination of baicalin

Miao Miao,^a Xue-Rui Dong,^a Zhe Lin,^a Qiao Gao,^{*a}

^aSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, PR China

*Corresponding Authors:gaoq915@nenu.edu.cn

1.1 Materials and Reagents

All chemicals and reagents were commercially obtained and used without further purification. Carbon nanotubes (CNTs, $\geq 99\%$ purity) with inner diameter 5-8 nm, outer diameter 10-15 nm, length 2-8 μm , and resistivity 1700 $\mu\Omega\cdot\text{m}$ were purchased from Aladdin Reagent Co., Ltd. (Shanghai, China). Methyl parathion (99.8% purity) was purchased from TMRM Quality Inspection Technology Co., Ltd. Baicalin (99.8% purity) was purchased from Yuanye Bio-Technology Co. Ltd. Nafion (5 wt%) was offered by Sigma-Aldrich (Shanghai, China). The following chemicals were procured from aladdin Biochemical Technology Co., Ltd. (Shanghai, China): Zinc chloride (ZnCl_2 , $\geq 98.0\%$), potassium chloride (KCl , $\geq 99\%$), ferric chloride (FeCl_3 , $\geq 99.0\%$), glucose ($\geq 99.8\%$), citric acid ($\geq 99.5\%$), ascorbic acid ($\geq 99.7\%$), urea ($\geq 99.0\%$), potassium ferrocyanide trihydrate ($\text{K}_4[\text{Fe}(\text{CN})_6]$, $\geq 99.5\%$), potassium ferricyanide ($\text{K}_3[\text{Fe}(\text{CN})_6]$, 99.5%). Phosphate buffer solution (PBS, pH = 7.0) was prepared using $\text{NaH}_2\text{PO}_4\cdot 2\text{H}_2\text{O}$ and $\text{Na}_2\text{HPO}_4\cdot 2\text{H}_2\text{O}$. The pH value of PBS was adjusted with 0.1 mol/L H_3PO_4 and 0.1 mol/L NaOH solution. Ultrapure water was used for the preparation of all solutions.

1.2 Physical measurements

Infrared (IR) spectra were acquired with an Nicolet iS50 FT/IR spectrometer employing KBr pellets in the region of 400-4000 cm^{-1} . X-ray diffraction (XRD)

patterns were collected on a Rigaku Dmax 2000 X-ray diffractometer, using Cu-K α radiation ($\lambda = 1.54$ nm) and 2θ ranging from 5 to 90°. X-ray photoelectron spectra (XPS) were collected with a ESCALAB 250Xi microscope (Thermo, USA). The samples' morphology was examined using transmission electron microscopy (TEM, Tecnai F20, USA). The energy dispersive spectroscopy (EDS) was analysed on a field emission scanning electron microscope (Bruker XFlash 6T-30). The Raman spectra were recorded on a microscopic Raman spectrometer (Horiba HR Evolution, France) with a 633 nm laser source.

1.3 Electrochemical methods

Electrochemical experiments were performed on a CHI-660E electrochemical workstation (Chenhua Instrument, Shanghai, China) equipped with a standard three-electrode system consist of a bare glassy carbon electrode (GCE) or modified GCE as the working electrode, a platinum wire as the counter electrode, and a saturated calomel electrode as the reference electrode. CV curves of desired Bn concentration were recorded in 0.1 mol·L⁻¹ phosphate-buffered solution (PBS, pH 7.0) over a potential range from -0.3 to 0.6 V, with a scan rate of 100 mV·s⁻¹. EIS measurements were carried out in a 5 mM [Fe(CN)₆]³⁻⁴⁻ solution with 0.1 M KCl as the supporting electrolyte, under the following parameters: frequency range of 10 Hz to 1000 kHz, AC amplitude of 5.0 mV, and a constant overpotential of 150 mV. Electrochemical detection of Bn was achieved using adsorptive stripping voltammetry, which included two sequential steps: (I) Enrichment step: The working electrode was immersed in 5 mL of Bn solution in 0.1 mol L⁻¹ PBS (pH 7.0) and maintained at +0.15 V for 480s at room temperature to facilitate static adsorption of Bn. (II) Detection step: DPV measurements were conducted within a potential range of -0.2 to 0.4 V using optimized parameters: pulse amplitude = 0.05 V, pulse width = 0.05 s, pulse period = 0.5 s, and quiet time = 2 s.

1.4 Real sample pretreatment

Add 1.0257 g of *Scutellaria baicalensis* to 50 mL of ethanol-water (3:7, v/v) mixed solvent, reflux extract at 80°C for 3 hours, filter, and collect the filtrate for later

use. Detection was performed using the standard addition method: 20 μ L of the sample filtrate was added to PBS buffer (pH 7.0), followed by the addition of Bn standard solutions (0, 2.6, 4.5, and 6.8 μ M), and the volume was adjusted to 10 mL. Immerse the $\text{P}_2\text{W}_{15}\text{V}_3@\text{CNTs}/\text{GCE}$ electrode in the solution for 8 minutes to enrich it, then measure using DPV, with three parallel measurements for each concentration.