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1. 'H & 3C NMR and HRMS Spectra of the Compounds
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Figure S1. *H NMR spectra (500 MHz, RT) of compound A in DMSO-ds.
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Figure S2. 3C{*H} NMR spectra (126 MHz, RT) of compound A in DMSO-ds.
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Figure S3. *H NMR spectra (500 MHz, RT) of compound Ba in CDCls.
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Figure S4. 3C{*H} NMR spectra (126 MHz, RT) of compound Ba in CDCls.
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Figure S6. 3C{*H} NMR spectra (126 MHz, RT) of compound Bb in CDCls.
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Figure S7. *H NMR spectra (500 MHz, RT) of compound Ca in CDCls.
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Figure S8. 13C{*H} NMR spectra (126 MHz, RT) of compound Ca in CDCls.
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Figure S9. *H NMR spectra (500 MHz, RT) of compound Cb in CDCls.
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Figure S10. *C{*H} NMR spectra (126 MHz, RT) of compound Cb in CDCls.
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Figure S11. 'H NMR spectra (500 MHz, RT) of compound 1 in CDCls.
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Figure S12. *C{*H} NMR spectra (126 MHz, RT) of compound 1 in CDCls + DMSO-ds.
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Figure S13. HRMS (ESI-TOF) spectrum of compound 1.
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Figure S14. *H NMR spectra (500 MHz, RT) of compound 2 in CDCls.
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Figure S16. HRMS (ESI-TOF) spectrum of compound 2.
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Figure S18. *C{*H} NMR spectra (126 MHz, RT) of compound 3 in CDCls.
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Figure S20. *H NMR spectra (500 MHz, RT) of compound 4 in CDCls.
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Figure S21. 3C{*H} NMR spectra (126 MHz, RT) of compound 4 in CDCls.
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2. Photophysical Properties of the Compounds
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Figure S23. Absorption spectra of compound 1 (A), compound 2 (B), compound 3 (C), and

compound 4 (D) in different polarities of solvents.
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Figure S24. Emission spectra of compound 1 (A), compound 2 (B), compound 3 (C), and
compound 4 (D) in different polarities of solvents. (Con. 1x10®° M, Aex = 375 nm). Digital

photos taken under a UV 365 nm lamp are incorporated alongside the spectral profiles.

Table S1. Optical data of compounds 1-4 in different polarities of solvents (Aex = 375 nm for

compounds).
S. | Compound | Solvents | Aabs (NM) | Aem(nm) | Av[a g=A/C. |
No. (dielectric (mol . Itr. cm™?)
constant, €)
1 1 Hexane 367 452 5124 2.2 x 10
(1.88)
Toluene 370 472 5841 2.6 x 10
(2.38)
CHCl; (4.81) 368 472 5987 2.7 x10°
THF (7.58) 365 471 6166 2.5 x 10
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ACN (37.5) 358 472 6747 3.0 x 10*

2 2 Hexane 367 476 6240 3.7 x 10
(1.88)

Toluene 371 474 5857 3.1 x 10
(2.38)

CHCI3(4.81) 370 482 6280 3.5 x 10

THF (7.58) 366 471 6091 3.0 x 10

ACN (37.5) 359 475 6803 3.2 x 10*

3 3 Hexane 371 473 5813 2.9 x 10
(1.88)

Toluene 377 483 5821 2.6 x 10*
(2.38)

CHCI3(4.81) 370 482 6280 2.1x10*

THF (7.58) 366 480 6489 2.0 x 10*

ACN (37.5) 356 487 7556 2.8 x 10*

4 4 Hexane 373 472 5623 2.9 x 10*
(1.88)

Toluene 378 481 5665 2.4 x 10
(2.38)

CHCI3(4.81) 371 483 6250 2.1 x10*

THF (7.58) 367 483 6544 1.7 x 10*

ACN (37.5) 356 488 7598 2.2 x 10*

[AIAv is stokes shift, vaps — Vem
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Figure S25. PXRD patterns of compounds (A) 1, (B) 2, (C) 3, and (D) 4.
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Figure S26. The plots of relative PL intensity (1/lo) of obtained compounds 1 (A), 2 (B), 3
(C), and 4 (D), respectively, versus different water fractions. lpand | are the values of PL

intensity at the maximum peak in THF and THF/water mixtures, respectively.
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Figure S27. The plots of relative wavelength (Amax) Of the obtained compounds 1 (A), 2 (B),

3 (C), and 4 (D), respectively, versus different water fractions in THF.

Table S2. Lifetime parameters of compounds 1-4 in solution (THF) and AIE ((fw) of 90% in

THF)
Compound In solution (THF) In AIE ((fw) of 90% in THF)
Tavr @ | K, 10°S? | Kir, 10°S? | tanr @ | K, 10°S? | K, 10°S?
1 0.033 | 0.05 151 28.78 0.354 | 0.38 1.07 1.75
2 0.032 | 0.08 2.50 28.75 0.356 | 0.31 0.87 1.93
3 0.107 | 0.21 1.96 7.38 0.111 | 0.11 0.99 8.01
4 0.103 | 0.29 2.81 6.89 0.119 | 0.19 1.59 6.81

Kr = Ot/ tavr; Knr = (1- @)/ Tavr.
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Figure S28. Lifetime profiles of compounds (A) 1, (B) 2, (C) 3, and (D) 4 in THF and 90%

water fraction in AIE.

3. Dynamic Light Scattering studies
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Figure S29. Size distributions of the aggregates of (A) 1, (B) 2, (C) 3, and (D) 4, THF-water
mixtures with fy = 90% (Con. 1x10° M).
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DFT Calculations
Table S3. DFT data of molecule 1.
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-4.889413273
-4.707883616
-6.234720468
4.000271958
3.239007616
3.973237948
-5.094785333
-1.006561751

-0.807585877
0.951261855
0.176522686
1.165333775

-0.942855266
2.172555151

-3.397473099
2.344218171

Table S4. DFT data of molecule 2.

o P O P OO O OO O N OO P OO O P P P P O OO OO OO OO OO O

-4.811254063
-5.384813704
-6.765756346
-7.572100922
-7.018462666
-5.642412109
-3.162778104
-7.195368367
-8.652114115
-7.686336108
-5.212652781
-1.814164504
-0.716921775
-0.965082309
-1.768775458
-1.821467446
0.706874207
1.272710422
1.583371440
2.653219477
0.643831972
2.965144970
1.186528567
3.501036753

1.011264586
-0.271153801
-0.485491179

0.632653992

1.917277649

2.123350848
-0.339233905
-1.471641231
0.513466431

2.760228023

3.108775968
-0.908708088
-0.103745354

0.940435847
-2.320110681
-3.469880115
-0.390773671
-1.664280308

0.706360937
-1.824030019
-2.535424696

0.555339291

1.701869212
-0.728409430

2.075949388
2.184342611
2.705241067
-0.066041876
0.093005417
-0.158159794
-0.976426789
-0.439311858

0.212576725
0.013284388
0.009790352
0.214066817
0.414679710
0.416841395
-0.050872132
-0.143904735
0.219190232
0.570167673
0.570440803
-0.178750607
-0.077367099
0.100368951
-0.408340430
-0.592170980
-0.165325063
-0.397795759
-0.009130709
-0.455972743
-0.532569460
-0.076224974
0.170788298
-0.281125900
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3.092356678
4.361350767
5.283448251
4.905622548
3.539033103
5.712381777
4.737012617
6.105486176
3.790731796
4.865501737
5.743712033
6.919230925
5.148936607
4.652169761
4.408409103
5.960143835
-4.301661553
-3.431473176
-4.327115015

-2.800538920
2.218801670
3.345389780
1.444879377
2.588293430
3.824879625
4.102267486
2.965201793
1.632113316

-0.903734573

-0.744228009

-0.699276249

-0.683542084
0.280410755

-1.474464275

-0.785462442

-1.114592392
0.932470988

-2.112379098

Table S5. DFT data of molecule 3.

oo O P P P P OO OO OO OO OO OO O

4.860354933
5.139302988
6.432145704
7.453955857
7.194470723
5.905803470
2.973331517
6.636237622
8.475141527
8.023960930
5.701478132
1.541174661
0.625624565

-0.998683985
-0.134863945
0.056541813
-0.648489880
-1.512799394
-1.698221133
-0.171358263
0.720124536
-0.531064565
-2.041274388
-2.360032844
0.135797514
-0.487366753

-0.637617193
-1.069507448
-0.644599501
-1.623306510
-1.696831990
-1.532093530
-0.071662601
-0.029370872
0.130263950
-0.413059720
0.651621244
0.398138061
2.037554076
2.189001181
2.193435363
2.759822885
-0.151965671
0.166527434
-0.317746356

-0.396587569
0.694217176
1.190373622
0.558331804

-0.529832667

-1.019150957
0.200445268
2.026172172
0.910468470

-0.991756615

-1.855507185
0.305829600

-0.476382334
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1.020216657
1.168357880
0.932787881
-0.835721760
-1.518123271
-1.615741763
-2.910296188
-3.003763738
-1.127288926
-3.647671457
-3.430510735
-4.460190171
-5.202264688
-3.781469490
-3.708585167
-5.027756007
-5.749281994
-6.945644278
-4.967767294
-4.389095202
-4.267718610
-5.676999398
3.908328363
3.506236428
3.715937206
-0.606503179
-4.961386892

-1.251945126
1.062974956
1.797289824

-0.310301556
0.910333673

-1.470658877
0.971431123

-1.428475364

-2.435323268

-0.182303420
1.914316066

-3.108590788

-2.387248589

-3.386174783

-2.575365841

-0.102722805

-0.252918341

-0.334919522

-0.272205404

-1.198882231
0.567260204
-0.223005585
0.381252210

-0.996943346
1.035204454

2.532873416

-3.998700693

Table S6. DFT data of molecule 4.

oo OO o o

-4.986298695
-5.335793211
-6.645457900
-7.611023178
-7.280937863

1.167657107
0.262518992
0.126441935
0.930470550
1.837134839

-1.143239037
1.335746185
2.207610159
-0.456013796
-0.616583990
-0.278484981
-0.540993512
-0.198795214
-0.171884057
-0.297442149
-0.668282713
-1.047797952
-1.404062978
-1.863313666
0.061121220
-0.268239369
0.911939181
0.819771787
2.202716354
2.278913147
2.262073124
3.029956139
1.053062683
-0.676219795
1.800902639
-1.022509047
-0.664227596

-0.356901939
0.678643855
1.148143526
0.546465401

-0.486650728
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-5.975879767
-3.164922712
-6.903745452
-8.642798162
-8.068208614
-5.717556707
-1.757047477
-0.793936507
-1.132245729
-1.459922426
-1.288311514
0.652571504
1.258003390
1.503307335
2.643531147
2.885986801
1.075256483
3.450320866
3.104304611
4.414415032
5.230874127
5.056812918
3.698059043
5.794501672
4582763995
5.944353715
3.664707689
4.822790106
5.557019199
6.755696634
4.785595491
4.261789603
4.038823293
5.495804451

1.967051701
0.186814288
-0.569665230
0.858634363
2.443228541
2.660931093
-0.218558017
0.386158239
1.210728563
-1.221999281
-2.015732939
0.115692243
-1.137178921
1.215958183
-1.288637906
1.084373588
2.203537886
-0.194479914
-2.255527434
2.735149731
3.896002793
1.959579760
3.066623085
4.356542319
4.657916075
3.555521145
2.169683909
-0.360883156
-0.276839548
-0.246113451
-0.263723338
0.690950613
-1.063425138
-0.385023341

-0.949801363
0.211091910
1.941410296
0.879478115

-0.926624664

-1.744188597
0.313466192

-0.425203458

-1.050277401
1.295174986
2.129098136

-0.409206925

-0.622811549

-0.180163355

-0.550519878

-0.101774060

-0.031733086

-0.257211692

-0.720276076

-0.906667401

-0.372817025

-1.338695591

-1.670266610

-1.192406155
0.073371537
0.384746832
0.202618350

-0.237062102
0.940815013
0.843137941
2.237902074
2.354052221
2.270530175
3.056876751
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-4.145644875
-3.631186617
-4.006161907

0.248750320

-0.351840459
1.094146063

-1.058940054
-2.679404655

1.020170306
-0.621730895

1.730435349

-1.105445458
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Figure S30. Simulated absorption spectra of compounds 1-4 (A-D), respectively, using
CAM-B3LYP paired with 6-31+G(d) basis set in tetrahydrofuran solvent.

Table S7. Computed singlet vertical transitions involved in compound 1 from TD-DFT
calculation using 6-31+G(d) basis set CAM-B3LYP functional in Gaussian09.

Excited E (eV) Amax f Major transitions (%0)2
States (nm)
S1 3.4888 | 355.37 | 1.1496 HOMO — LUMO (47.1 %)
S2 43681 | 283.84 | 0.0679 HOMO-1 — LUMO (45.5 %)
S3 44800 | 276.75 | 0.0173 HOMO-3 — LUMO (21.0 %)
HOMO-2 — LUMO (19.9 %)
Sy 47571 | 260.63 | 0.0870 HOMO-3 — LUMO (17.3 %)
HOMO-2 — LUMO (23.6 %)
Ss 5.2615 | 235.64 | 0.0047 HOMO-4 — LUMO (40.6 %)
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& TD-DFT—predicted electronic transitions highlight only values greater than 10%, as

mentioned in the table.

Table S8. Computed singlet vertical transitions involved in compound 2 from TD-DFT
calculation using 6-31+G(d) basis set CAM-B3LYP functional in Gaussian09.

Excited E (eV) Amax f Major transitions (%0)?2
States (nm)
S1 3.4878 | 355.48 | 1.1586 HOMO — LUMO (47.0 %)
S2 43742 | 283.44 | 0.0680 HOMO-1 — LUMO (45.4 %)
Ss 44809 | 276.69 | 0.0182 HOMO-3 — LUMO (21.3 %)

HOMO-2 — LUMO (19.6 %)

Sa 47548 | 260.76 | 0.0859 HOMO-3 — LUMO (17.0 %)

HOMO-2 — LUMO (23.9 %)

Ss 52644 | 23552 | 0.0507 HOMO — LUMO+2 (24.9 %)

& TD-DFT—predicted electronic transitions highlight only values greater than 10%, as

mentioned in the table.

Table S9. Computed singlet vertical transitions involved in compound 3 from TD-DFT
calculation using 6-31+G(d) basis set CAM-B3LYP functional in Gaussian09.

Excited E (eV) Amax f Major transitions (%0)?2
States (nm)
Si 3.7886 | 327.25 | 0.8718 HOMO — LUMO (45.1 %)
Sz 4.3955 | 282.07 | 0.0129 HOMO-2 — LUMO (35.6 %)
S3 44681 | 277.49 | 0.0865 HOMO-1 — LUMO (37.1 %)
S 4.8597 | 255.13 | 0.0247 HOMO-3 — LUMO (34.3 %)

& TD-DFT—predicted electronic transitions highlight only values greater than 10%, as

mentioned in the table.

Table S10. Computed singlet vertical transitions involved in compound 4 from TD-DFT
calculation using 6-31+G(d) basis set CAM-B3LYP functional in Gaussian09.
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Excited E (eV) Amax f Major transitions (%0)2
States (nm)
S1 3.7785 | 328.13 | 0.8795 HOMO — LUMO (45.1 %)
S2 43876 | 28258 | 0.0150 HOMO-2 — LUMO (36.4 %)
Ss 44671 | 277.55 | 0.0874 HOMO-1 — LUMO (38.1 %)
Sa 4.8509 | 255.59 | 0.0255 HOMO-3 — LUMO (34.5 %)

& TD-DFT—predicted electronic transitions highlight only values greater than 10%, as

mentioned in the table.
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