

Supplementary Information

Mixed-phase FeMoO₄ for synergistic photocatalytic peroxydisulfate activation toward efficient tetracycline degradation

Runyu Cai,^{†a} Zhongliang Shi,^{†a} Shifeng Li,^a Shuhua Yao,^a Dongjing Wang,^a Man Xu^{*ab} and Xuan Cao^{*c}

^a*College of science, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China*

^b*Instrumental Analysis Center, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China. E-mail: xuman.jlu@vip.163.com*

^c*Center for Interdisciplinary Research and Innovation, Muyuan Laboratory, Zhengzhou, Henan, 450016, China. E-mail: cx.1988@aliyun.com*

† These two authors contributed equally to this paper.

CONTENT

1. **Text S1** Materials.
2. **Text S2** Characterization.
3. **Text S3** Photoelectrochemical measurements.
4. **Text S4** Liquid chromatography-mass spectrometry test.
5. **Fig. S1** SEM images of FeMoO₄ (a). SEM-EDS mapping images of FeMoO₄ (b-d).
6. **Fig. S2** Pseudo second-order kinetics models for different systems (a), solution pH (b), catalyst dosage (c), PDS dosage (d), TC concentration (e), Inorganic anions (f), scavengers (g), cycles (h). Reaction conditions: TC, 10 mg/L; pH, 3; FeMoO₄, 60 mg/L; PDS, 30 mg/L (a-c), 70 mg/L (d-h); anions, 10 mM (f).
7. **Fig. S3** LC-MS diagrams of TC degradation process.
8. **Fig. S4** Comparison of XRD patterns of FeMoO₄ before and after the reaction.
9. **Table S1** Dynamic model fitting parameters of FeMoO₄, α -FeMoO₄, and β -FeMoO₄.
10. **Table S2** Dynamic model fitting parameters under different reaction conditions.
11. **Table S3** Dynamic model fitting parameters under different pH and catalyst dose.
12. **Table S4** Dynamic model fitting parameters under different PDS and TC concentration.

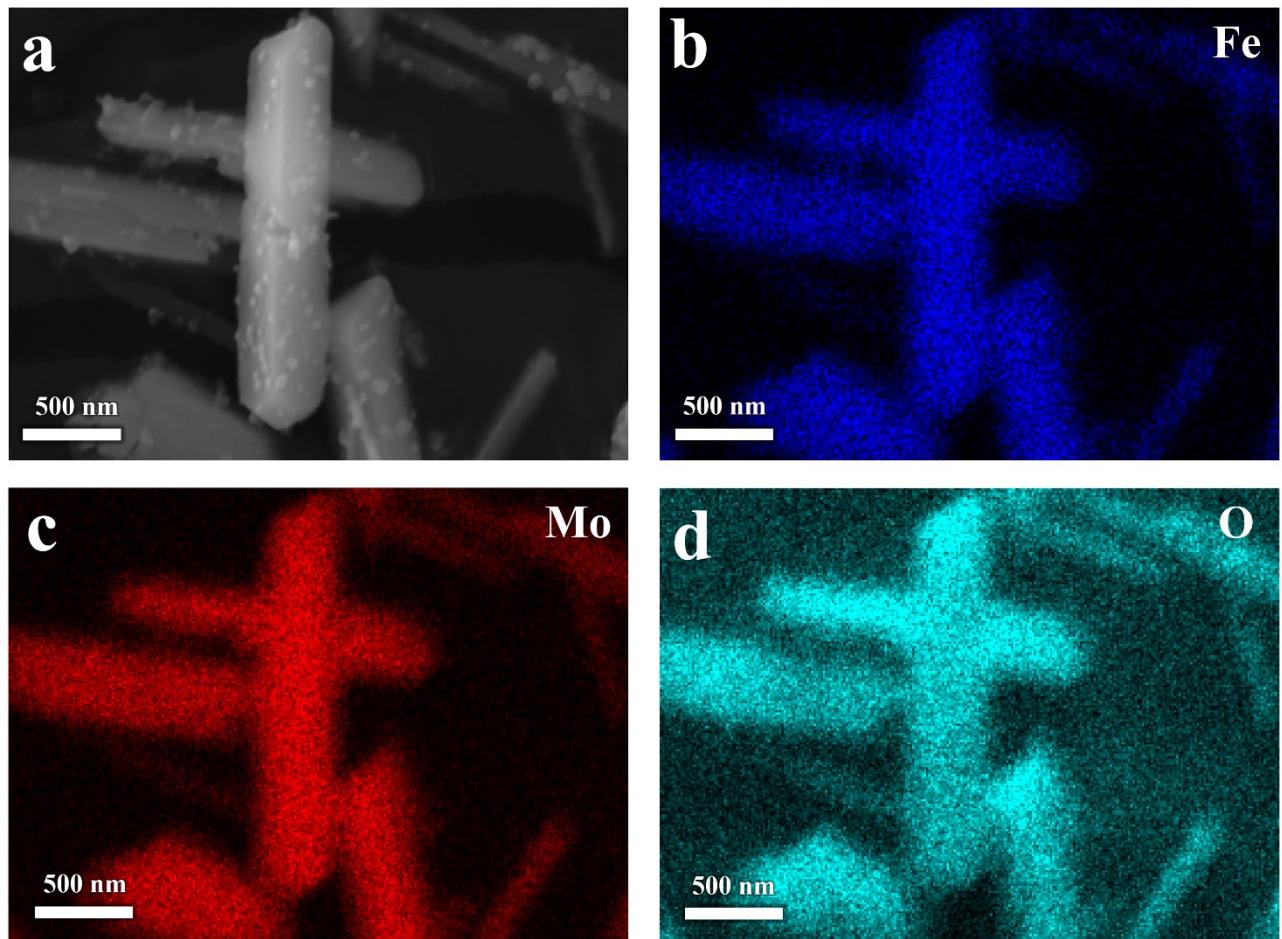
13. **Table S5** Dynamic model fitting parameters under different Inorganic anions.
14. **Table S6** Dynamic model fitting parameters under different scavengers.
15. **Table S7** Dynamic model fitting parameters under four cycles of FeMoO₄.
16. **Table S8** Specific surface area, pore volume and average pore size of FeMoO₄, α -FeMoO₄, and β -FeMoO₄.
17. **Table S9** Comparison of the TC degradation effects in different reaction systems.
18. **References**

Text S1. Materials.

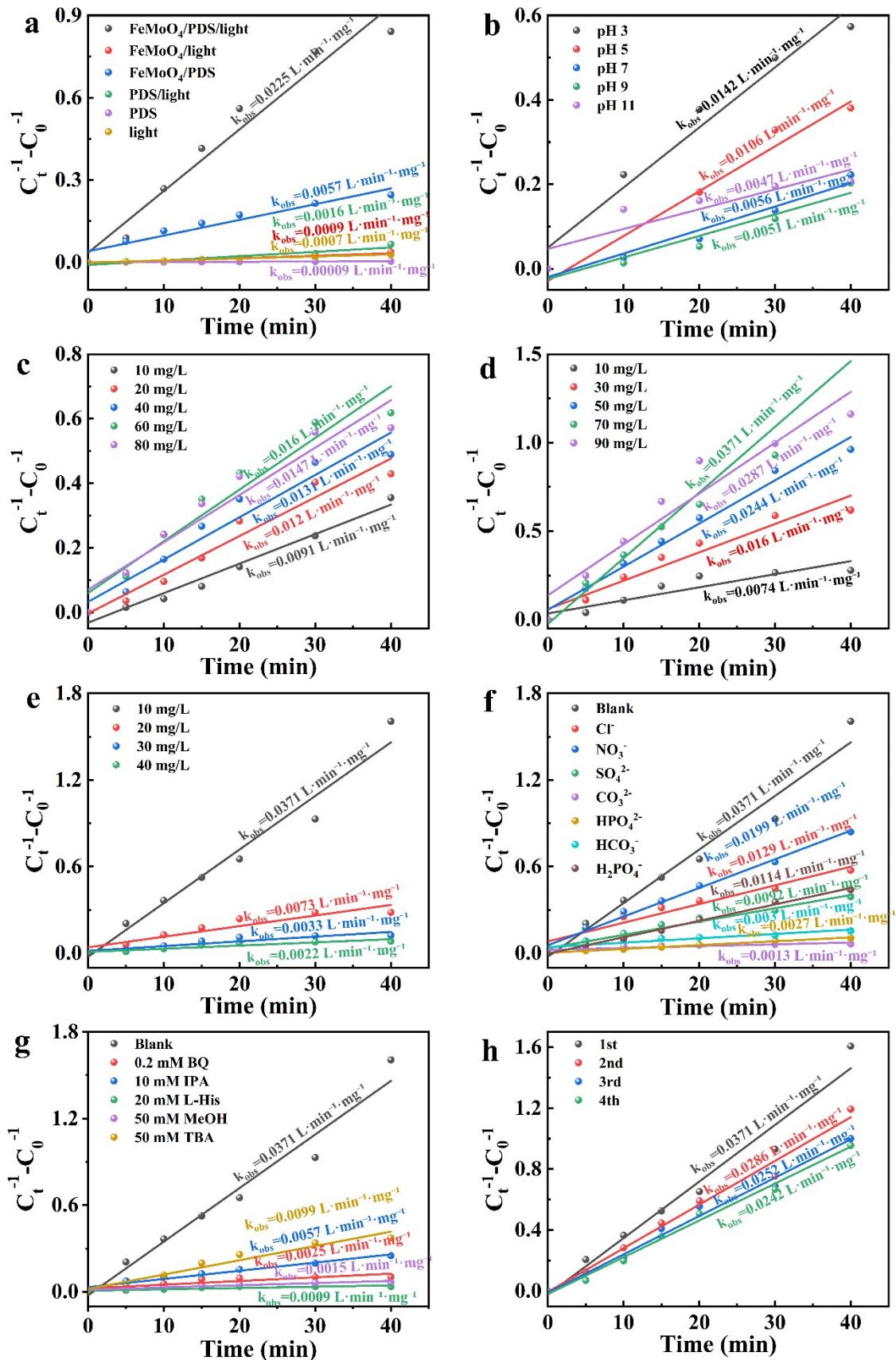
Methanol (MeOH, > 99.7%), ethanol (EtOH, > 99.7%) and sodium bicarbonate (NaHCO₃, > 99.5%) were obtained from Tianjin Yongda Chemical Reagent Co., Ltd. tert-Butanol (t-BuOH, > 99.5%), sodium chloride (NaCl, > 99.5%), sodium nitrate (NaNO₃, > 99%), disodium hydrogen phosphate dodecahydrate (Na₂HPO₄·12H₂O, > 99%), sodium dihydrogen phosphate dodecahydrate (NaH₂PO₄·12H₂O, > 99%), and sodium sulfate (Na₂SO₄, > 99%) were supplied by Tianjin Damao Chemical Reagent Co., Ltd. Sodium hydroxide (NaOH, > 96%) was provided by Tianjin Hengxing Chemical Reagent Manufacturing Co., Ltd. Ferrous sulfate heptahydrate (FeSO₄·7H₂O, > 99%), sodium molybdate dihydrate (Na₂MoO₄·2H₂O, > 99%), hydrochloric acid (HCl, 36–38%), TC hydrochloride (C₂₂H₂₄N₂O₈·HCl, > 98%), p-benzoquinone (C₆H₄O₂, > 98%), isopropanol (i-PrOH, > 99.7%), and sodium carbonate (Na₂CO₃, > 99.8%) were purchased from Sinopharm Chemical Reagent Co., Ltd. L-Histidine (C₆H₉N₃O₂, > 99%) was acquired from Macklin Biochemical Technology Co., Ltd., and sodium persulfate (Na₂S₂O₈, > 99%) was sourced from Shanghai Aladdin Biochemical Technology Co., Ltd.

Text S2. Characterization.

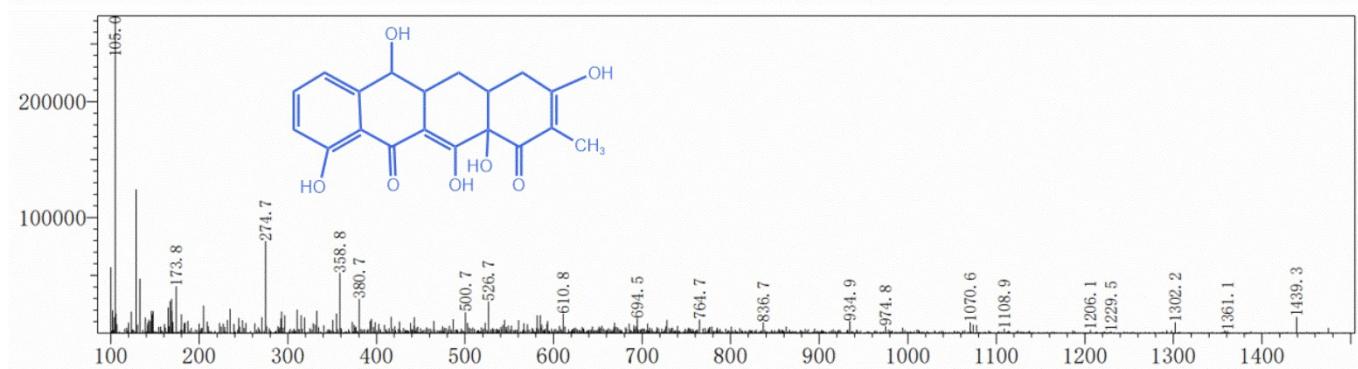
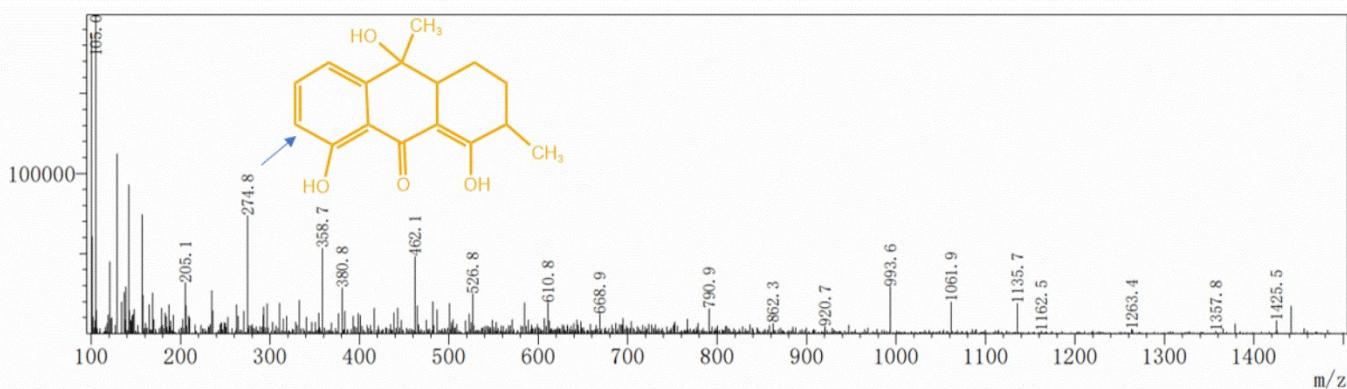
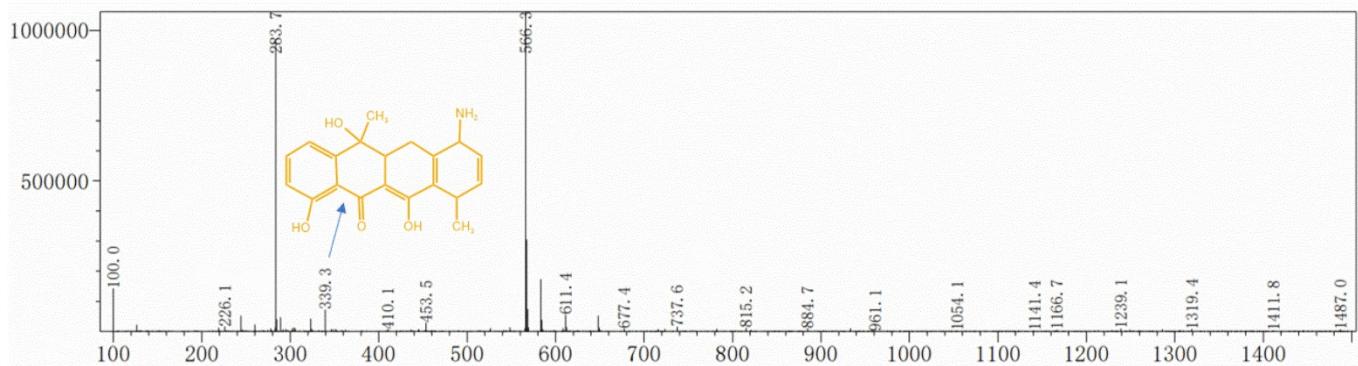
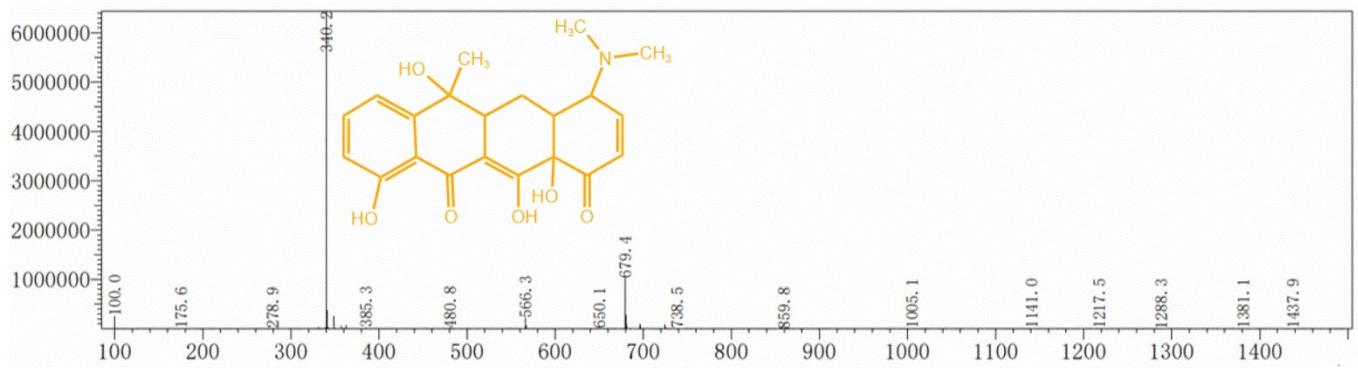
The powder X-ray diffraction (XRD) measurements were performed using a D8 Advance Bruker X-ray diffractometer, utilizing Cu K α radiation ($\lambda = 0.5418$ nm) under conditions of 56 KV and 182 mA. To observe morphology and perform element mapping analysis, a scanning electron microscope (SEM-JSM-6360LV) equipped with energy dispersive X-ray spectroscopy (EDX-S-3400N) was utilized. The structural and morphological features of the nanoparticles were observed using a high-resolution transmission electron microscope (JEM-F200, Japan, TEM). The functional groups and chemical structure of the prepared catalyst samples were analyzed using the IRTtracer-100 Fourier Transform Infrared Spectrometer (FT-IR) produced by Shimadzu Corporation of Japan. Specific surface areas were determined using a BELSORP-miniX analyzer through N₂ adsorption-desorption, applying the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The chemical composition and valence states of the samples were analyzed using X-ray Photoelectron Spectroscopy (XPS-Thermo ESCALAB 250), with further investigation into

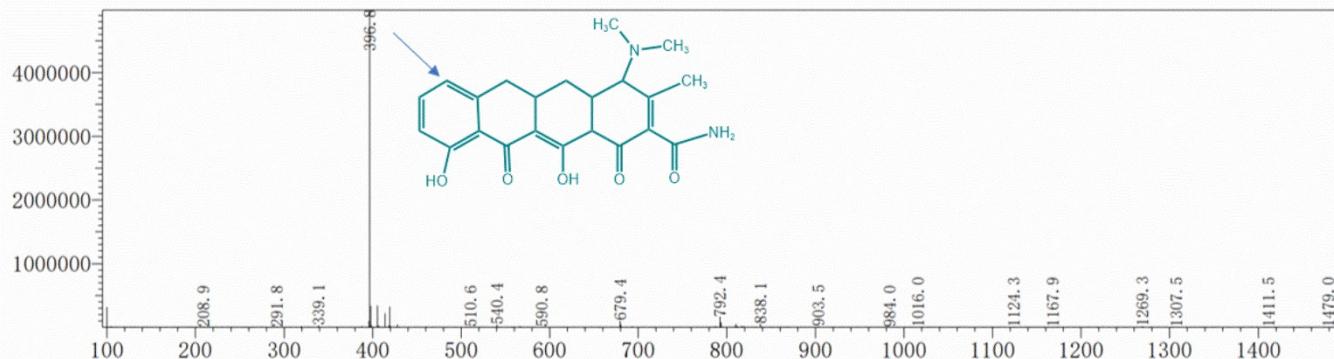
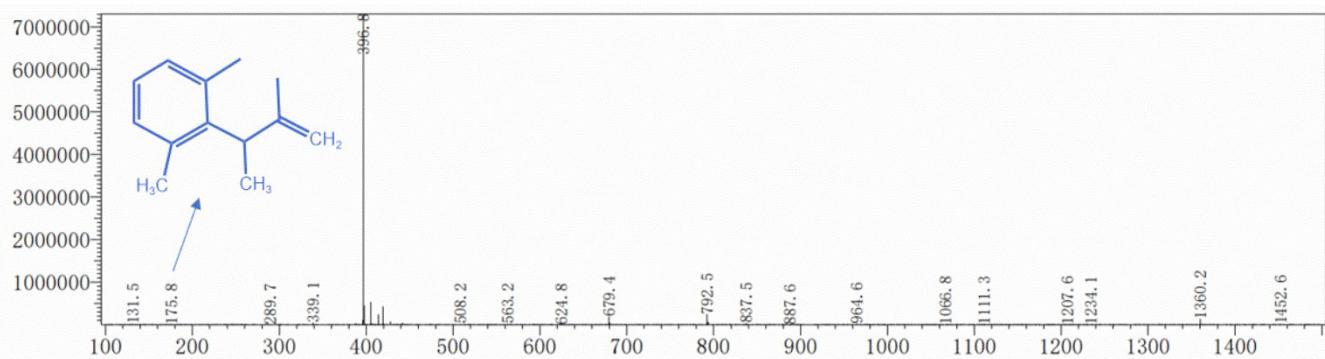
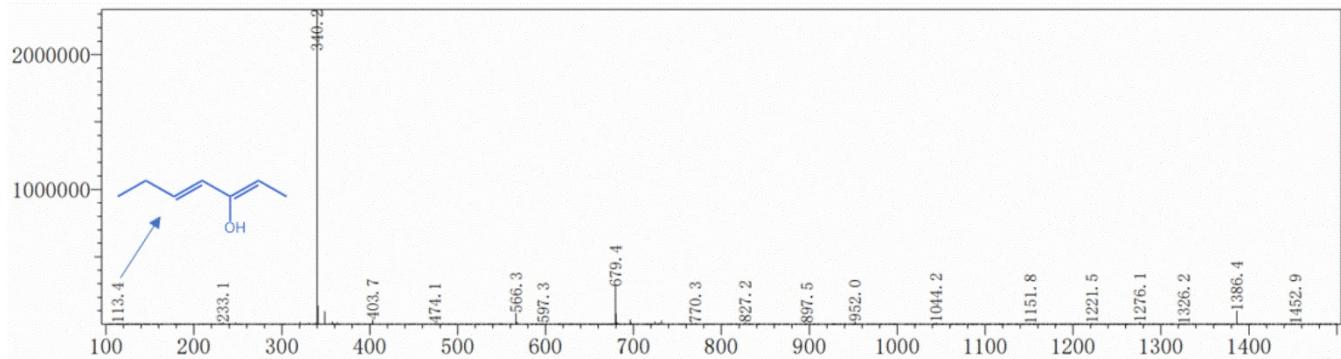
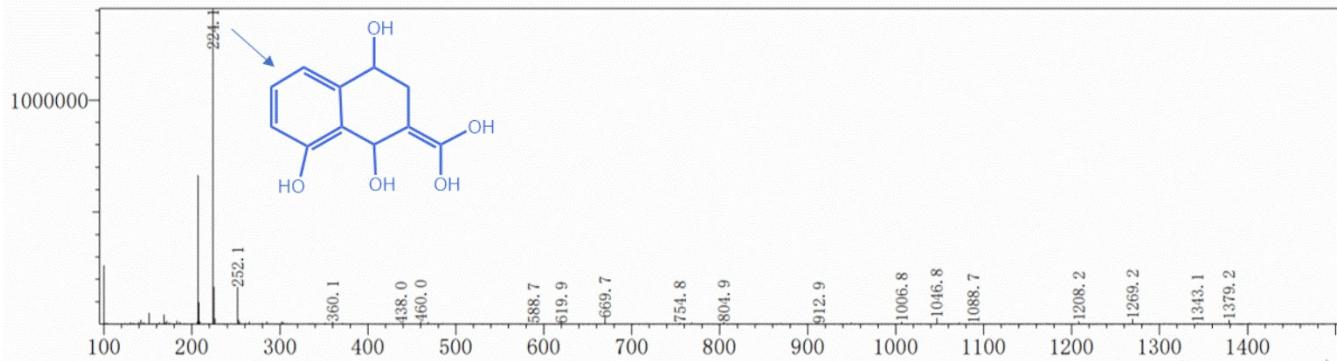

the charge transfer pathway. Additionally, the spectra were calibrated relative to the C 1s peak at 284.8 eV. The optical adsorption capacity of the catalysts was assessed using the Hitachi U4100 UV spectrometer, operating within the spectral range of 190-900 nm. Photoluminescence (PL) spectra were obtained using a HORIBA spectrometer, with a monochromator slit width of 5.0 nm. Bruker E500 Electron Paramagnetic Resonance (EPR) spectroscopy was employed to detect active species.

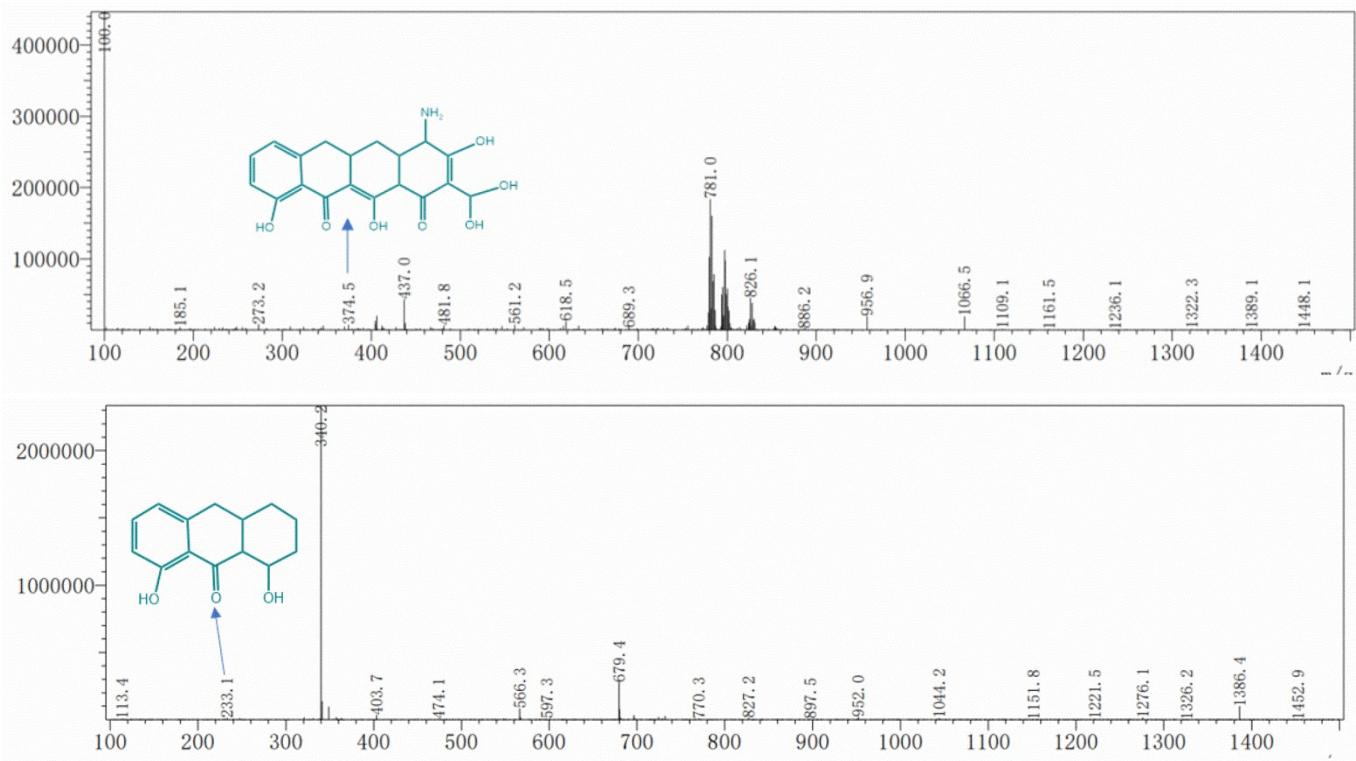
Text S3. Photoelectrochemical measurements.


Electrochemical measurements were carried out on a CHI760E electrochemical workstation with a stand three-electrodes system. Among them, a Pt wire was used as the counter electrode, and the reference electrode was the saturated Ag/AgCl. The cleaned F-doped tin oxide (FTO) glass was used as the working electrode. 5 mg of corresponding photocatalyst and 20 μ L of Nafion (5%) were added into 980 μ L of ethanol to form a homogeneous slurry. The homogeneous slurry was ultrasonicated for 30 min and then coated on the FTO glass. The obtained system was dried at 150 °C for 60 min. The supporting electrolyte was Na_2SO_4 solution (0.5 M) with the pH value of 6.8. The incident visible light source was Xe lamp (300 W). The photocurrent-time was investigated in the irradiation of Xe lamp at a bias potential of 0.5 V vs. Ag/AgCl. The electrochemical impedance spectroscopy (EIS) was detected by an AC voltage amplitude of 10 mV at -0.3 V versus Ag/AgCl over the frequency range from 10 kHz to 0.01 Hz. The Mott-Schottky was studied in the electrolyte of Na_2SO_4 (0.5 M), and the frequency of the AC potential was set as 1000 Hz as well as the amplitude was 10 mV.

Text S4. Liquid chromatography-mass spectrometry test.





The intermediates generated during the decomposition of HTC were identified using liquid chromatography-mass spectrometry (LC-MS). A C18 column (4.6×150 nm) was employed with an injection volume of 10 μ L, and eluent A consisted of 0.1% ammonium hydroxide (v/v), while acetonitrile served as eluent B. By combining 5% eluent A with 95% eluent B, effective separation could be achieved. Full-scan analysis in the range of 100 to 1500 m/z was conducted using electrospray ionization source in positive ionization mode (EIS(+)). The remaining operational parameters were set as follows: a capillary voltage of 4.5 kV, N_2 for desolvent gas, a gas temperature of 150 °C, and a gas flow rate of 15 L/min.


Fig. S1 SEM images of FeMoO₄ (a). SEM-EDS mapping images of FeMoO₄ (b-d).

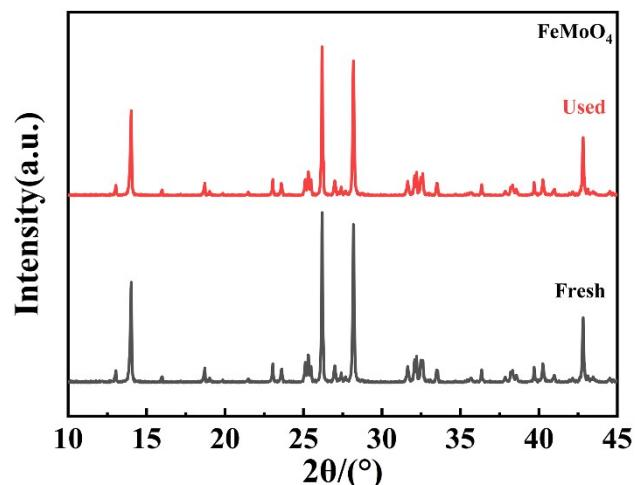

Fig. S2 Pseudo second-order kinetics models for different systems (a), solution pH (b), catalyst dosage (c), PDS dosage (d), TC concentration (e), Inorganic anions (f), scavengers (g), cycles (h). Reaction conditions: TC, 10 mg/L; pH, 3; FeMoO₄, 60 mg/L; PDS, 30 mg/L (a-c), 70 mg/L (d-h); anions, 10 mM (f).

Fig. S3 LC-MS diagrams of TC degradation process.

Fig. S4 Comparison of XRD patterns of FeMoO_4 before and after the reaction.

Table S1 Dynamic model fitting parameters of FeMoO₄, α-FeMoO₄, and β-FeMoO₄.

Sample	[PDS] (mg/L)	pH	[Cat] (mg/L)	[Pollution] (mg/L)	Pseudo first-order reaction		Pseudo second-order reaction	
					k ₁ (min ⁻¹)	R ²	k ₂ (L· min ⁻¹ ·mg ⁻¹)	R ²
α-FeMoO ₄	30	3	60	10	0.0328	0.798	0.009	0.881
β-FeMoO ₄	30	3	60	10	0.0306	0.814	0.0078	0.922
FeMoO ₄	30	3	60	10	0.0428	0.804	0.016	0.941

Table S2 Dynamic model fitting parameters under different reaction conditions.

Visible light	[PDS] (mg/L)	pH	[Cat] (mg/L)	[Pollution] (mg/L)	Pseudo first-order reaction		Pseudo second-order reaction	
					k ₁ (min ⁻¹)	R ²	k ₂ (L· min ⁻¹ ·mg ⁻¹)	R ²
Yes	30	3	60	10	0.0513	0.835	0.0225	0.961
Yes	0	3	60	10	0.0069	0.966	0.0009	0.949
No	30	3	60	10	0.0246	0.809	0.0057	0.926
Yes	30	3	0	10	0.0118	0.914	0.0016	0.88
No	30	3	0	10	0.0008	0.988	8.6 ⁻⁵	0.989
Yes	0	3	0	10	0.0065	0.989	0.0007	0.991

Table S3 Dynamic model fitting parameters under different pH and catalyst dose.

[PDS] (mg/L)	pH	[Cat] (mg/L)	[Pollution] (mg/L)	Pseudo first-order reaction		Pseudo second-order reaction	
				k ₁ (min ⁻¹)	R ²	k ₂ (L· min ⁻¹ ·mg ⁻¹)	R ²
30	3	60	10	0.0419	0.833	0.0142	0.963
30	5	60	10	0.0401	0.944	0.0106	0.957
30	7	60	10	0.0272	0.995	0.0056	0.958
30	9	60	10	0.0267	0.975	0.0051	0.928
30	11	60	10	0.0227	0.709	0.0047	0.798
30	3	10	10	0.0381	0.991	0.0091	0.976
30	3	20	10	0.042	0.91	0.012	0.958
30	3	40	10	0.0414	0.84	0.0131	0.941
30	3	60	10	0.0428	0.804	0.016	0.941
30	3	80	10	0.0402	0.785	0.0147	0.925

Table S4 Dynamic model fitting parameters under different PDS and TC concentration.

[PDS] (mg/L)	pH	[Cat] (mg/L)	[Pollution] (mg/L)	Pseudo first-order reaction		Pseudo second-order reaction	
				k_1 (min ⁻¹)	R ²	k_2 (L·min ⁻¹ ·mg ⁻¹)	R ²
10	3	60	10	0.0308	0.788	0.0074	0.856
30	3	60	10	0.0428	0.804	0.016	0.941
50	3	60	10	0.0501	0.823	0.0244	0.982
70	3	60	10	0.0585	0.872	0.0371	0.968
90	3	60	10	0.0514	0.729	0.0287	0.924
70	3	60	10	0.0585	0.872	0.0371	0.968
70	3	60	20	0.0413	0.75	0.0073	0.884
70	3	60	30	0.0362	0.767	0.0033	0.853
70	3	60	40	0.0341	0.795	0.0022	0.872

Table S5 Dynamic model fitting parameters under different Inorganic anions.

anions	[anions] (mM)	Pseudo first-order reaction		Pseudo second-order reaction	
		k_1 (min ⁻¹)	R ²	k_2 (L·min ⁻¹ ·mg ⁻¹)	R ²
Blank	0	0.0585	0.872	0.0371	0.968
Cl ⁻	10	0.0366	0.753	0.0129	0.943
NO ₃ ⁻	10	0.0451	0.824	0.0199	0.988
SO ₄ ²⁻	10	0.0327	0.858	0.0092	0.972
CO ₃ ²⁻	10	0.0085	0.606	0.0013	0.655
HPO ₄ ²⁻	10	0.016	0.976	0.0027	0.993
HCO ₃ ⁻	10	0.0155	0.672	0.003	0.782
H ₂ PO ₄ ⁻	10	0.0387	0.947	0.0114	0.995

Table S6 Dynamic model fitting parameters under different scavengers.

scavenger	[scavenger] (mM)	Pseudo first-order reaction		Pseudo second-order reaction	
		k_1 (min ⁻¹)	R ²	k_2 (L·min ⁻¹ ·mg ⁻¹)	R ²
Blank	0	0.0585	0.872	0.0371	0.968
BQ	0.2	0.0153	0.721	0.0025	0.76
IPA	10	0.025	0.849	0.0057	0.958
L-His	20	0.0067	0.766	0.0009	0.778
MeOH	50	0.01	0.805	0.0015	0.853
TBA	50	0.0354	0.871	0.0099	0.951

Table S7 Dynamic model fitting parameters under four cycles of FeMoO₄.

Number of cycles	Pseudo first-order reaction		Pseudo second-order reaction	
	k ₁ (min ⁻¹)	R ²	k ₂ (L·min ⁻¹ ·mg ⁻¹)	R ²
1	0.0585	0.872	0.0371	0.968
2	0.0555	0.88	0.0286	0.986
3	0.0554	0.883	0.0252	0.985
4	0.0552	0.9	0.0242	0.992

Table S8 Specific surface area, pore volume and average pore size of FeMoO₄, α -FeMoO₄, and β -FeMoO₄.

Sample	Surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
FeMoO ₄	18.82	0.147	31.21
α -FeMoO ₄	8.16	0.044	21.65
β -FeMoO ₄	3.31	0.026	30.95

Table S9 Comparison of the TC degradation effects in different reaction systems.

Catalyst	M (g/L)	C (mg/L)	T (min)	R (%)	I mg/(g·min)	System	
g-C ₃ N ₄ /BC/Fe ₂ O ₃	0.1	5	60	94.9	0.791	g-C ₃ N ₄ /BC/Fe ₂ O ₃ /PDS/light	1
Bi ₂ WO ₆ /Fe ₂ O ₃	0.33	30	30	84.8	2.57	Bi ₂ WO ₆ /Fe ₂ O ₃ /PDS/light	2
La/TiO ₂ @g-C ₃ N ₄	0.5	30	60	95.52	0.955	La/TiO ₂ @g-C ₃ N ₄ /PDS/light	3
Mn–FeOOH /CNNS	0.3	20	50	99.7	1.329	Mn–FeOOH /CNNS/PDS/light	4
MnFe ₂ O ₄ /BC /P-CN	1	50	70	99.7	0.712	MnFe ₂ O ₄ /BC /P-CN/PDS/light	5
FeOOH /g-C ₃ N ₄	0.3	20	80	98.8	0.823	FeOOH /g-C ₃ N ₄ /PDS/light	6
BiOBr	1	20	90	80.3	0.178	BiOBr/PDS/light	7
Nb ₂ O ₅ /C ₃ N ₅	0.1	10	160	95	0.594	Nb ₂ O ₅ /C ₃ N ₅ /PDS/light	8
g-C ₃ N ₅ /BiOCl	0.3	5	90	93.7	0.174	g-C ₃ N ₅ /BiOCl/PDS/light	9
Bi ₂ Fe ₄ O ₉ /rGO /g-C ₃ N ₄	0.2	10	40	93.8	1.173	Bi ₂ Fe ₄ O ₉ /rGO /g-C ₃ N ₄ /PDS/light	10
ZnFe ₂ O ₄ /Ag	0.3	20	80	90.06	0.751	ZnFe ₂ O ₄ /Ag/PDS/light	11
FeMoO ₄	0.06	10	40	94.18	3.924	FeMoO ₄ /PDS/light	This paper

The variables C, R, M, and T represent the pollutant concentration (mg/L), target pollutant removal efficiency (%), catalyst dosage (g/L), and treatment time (min), respectively.

References

- 1 H. Yu, J. Zhang, R. Zhai, C. Gao, Y. Zhang, C. Tian and Q. Ma, Carbon, 2024, **230**, 119681.
- 2 W. Wang, G. Wei, Z. Fan, L. Zhang, J. Gu and F. Gao, Journal of Environmental Chemical Engineering, 2025, **13**, 116192.
- 3 Y. Wang, J. Xiu, T. Gan, H. Zou and F. Li, RSC Advances, 2023, **13**, 8383-8393.
- 4 Y. Li, C. Qu, Q. Ye, F. Meng, D. Yang and L. Wang, Environmental Research, 2024, **257**, 119293.
- 5 X. Liu, W. Liu, H. Zhan, X. Chen and H. Li, Solid State Sciences, 2025, **168**, 108016.
- 6 Y. Li, C. Qu, Q. Ye, F. Meng, D. Yang and L. Wang, Journal of Environmental Chemical Engineering, 2024, **12**, 113791.
- 7 Q. He, M. Ge and Q. Yu, Journal of Chemical Sciences, 2021, **133**, 98.
- 8 W. Liao, Z. Yang, Y. Wang, S. Li, C. Wang and Z. Zhou, Chemical Engineering Journal, 2023, **478**, 147346.
- 9 Y. Liu, P. Wang, C. Yin, C. Xu, X. Kang, Z. Jing, L. Chen and Z. Wang, Journal of Environmental Chemical Engineering, 2025, **13**, 115565.
- 10 Z. Wu, J. Shi and H. Deng, Separation and Purification Technology, 2024, **349**, 127779.
- 11 T. Song, X. Meng, H. Wang, C. Zhang and M. Ge, Separation and Purification Technology, 2022, **297**, 121474.