Supplementary Information

Investigating the antibacterial, antioxidant, cytotoxic, and computational studies of Co(II) and Zn(II) compounds of heteroatom-based dicarboxylic acids

Jyoti^a, Priya Bhardwaj^b, Mulaka Maruthi^{b*}, Sumit Mittal^{c*}, Anee Mohanty^{d*}, Sadhika Khullar^{a*}

^aDepartment of Chemistry, Dr. B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144008, India

^bDepartment of Biochemistry, Central University of Haryana, Mehendergarh, Haryana, 123031, India.

^c School of Advanced Science and Languages, VIT Bhopal University, Sehore, Madhya Pradesh, 466114, India

^dDepartment of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India

Corresponding author email: <u>mohantya@nitj.ac.in</u>, <u>Sumit.mittal@vitbhopal.ac.in</u>, khullars@nitj.ac.in

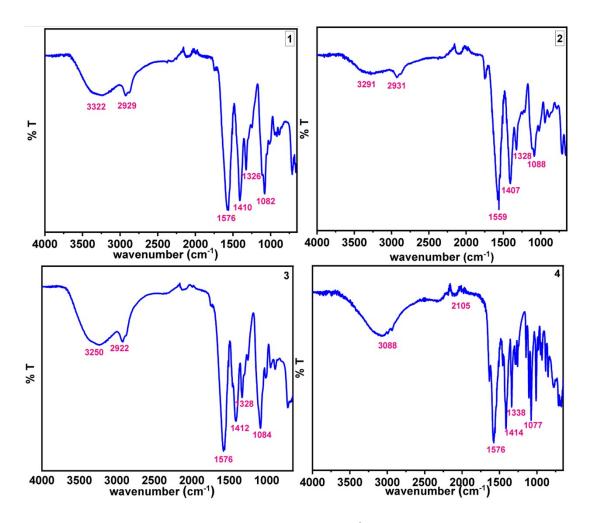
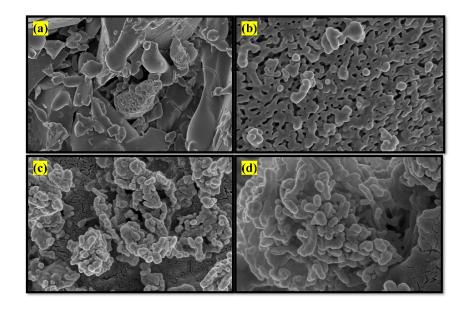
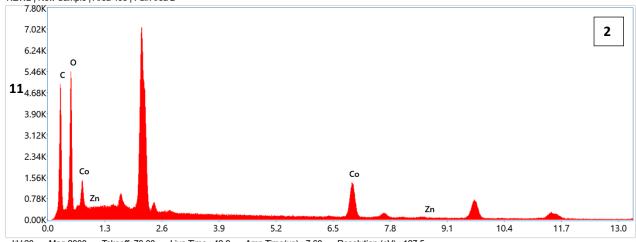
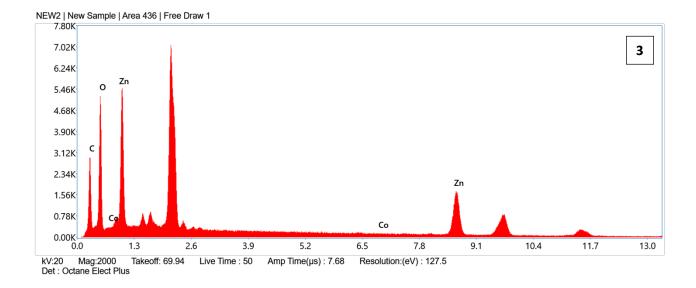



Fig. S1. FTIR spectra of 1-4.



NEW2 | New Sample | Area 437 | Full Area 1



kV:20 Mag:2000 Det : Octane Elect Plus Takeoff: 70.05 Live Time : 50 Amp Time(µs): 7.68 Resolution:(eV): 127.5

kV:20 Mag:2000 Det : Octane Elect Plus Takeoff: 70.03 Live Time : 49.9 Amp Time(µs) : 7.68 Resolution:(eV): 127.5

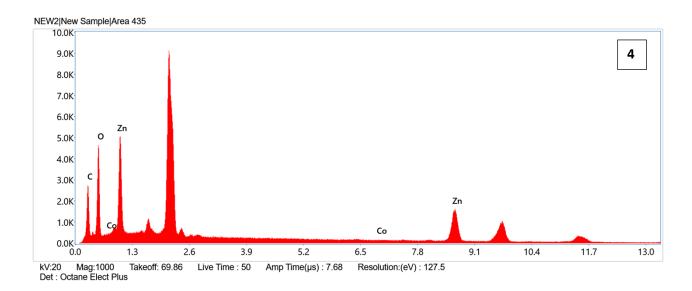
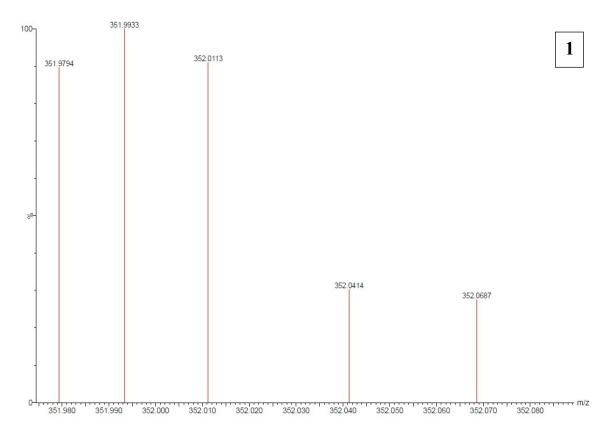



Fig. S2. FE-SEM images of 1-4 and EDX spectra of 1-4.

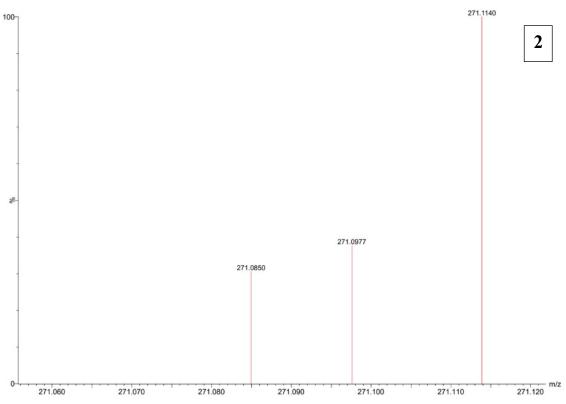
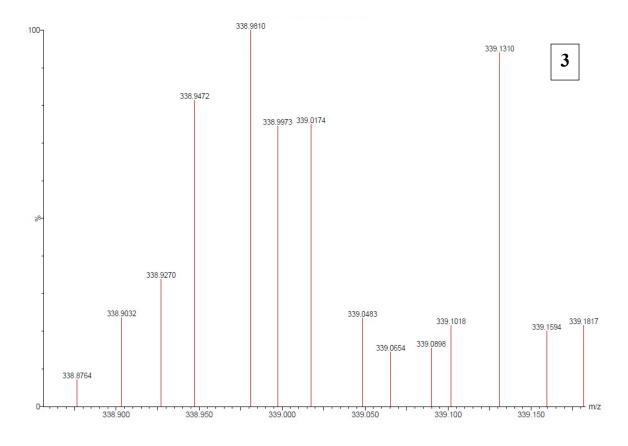



Fig. S3. Mass spectra of 1-2.

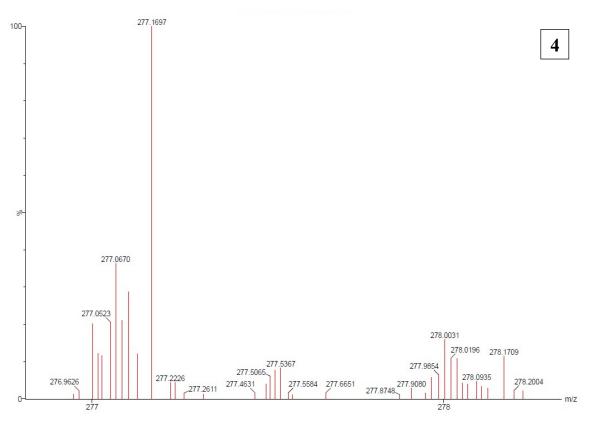


Fig. S4. Mass spectra of 3-4.

XPS Spectroscopy

In compound 2, the Co 2p peaks appeared at 781.9 eV $(2p_{3/2})$ and 797.8 eV $(2p_{1/2})$, with a $\Delta E_{3/2-1/2}$ binding energy gap of two peaks of 15.1 eV, confirming the presence of cobalt is in the Co²⁺ oxidation state as shown in **Fig. S6** along with their corresponding peaks (785.9 and 802.4 eV). The O 1s peak at 532.58 eV also corresponded to the hydroxyl group, Fig. S6. Three significant peaks of the C 1s spectrum showed at 285.0 eV (C-C), 286.4 eV (C-O-C), and 288.5 eV (O=C-OH), consistent with the carboxyl group, S1 as shown in Fig. S6. Similarly, compound 3 contains Zn 2p, C 1s, and O 1s peaks. The Zn 2p peaks appeared at 1022.8 eV (2p_{3/2}) and 1045.28 eV (2p_{1/2}), with a binding energy difference $\Delta E_{3/2-1/2}$ of 23.2 eV, confirming that zinc exists in Zn²⁺ oxidation state, as shown in Fig. S7. The O 1s peak around 532.28 eV corresponded to the hydroxyl group in Fig. S7. C 1s peaks at 284.6 eV (C-C), 286.38 eV (C-O), and 288.78 eV (C=O), indicating the presence of the carboxyl group in Fig. S7. Similarly, for compound 4, peaks corresponding to Zn 2p, C 1s, and O 1s were identified. The Zn 2p spectrum exhibited two peaks at 1022.28 eV $(2p_{3/2})$ and 1045.38 eV $(2p_{1/2})$, with a $\Delta E_{3/2-1/2}$ of 23.1 eV, indicating that the zinc is in the Zn²⁺ oxidation state, as shown in Fig. S8. The O1s spectrum, with a peak at 532.18 eV, corresponds to the oxygen atom in the hydroxyl group, as shown in Fig. S8. The C 1s spectrum displayed three peaks at 284.78 eV (C-C), 286.48 eV (C-O), and 288.88 eV (C=O), confirming the presence of the carboxyl group as shown in Fig. **S8**.

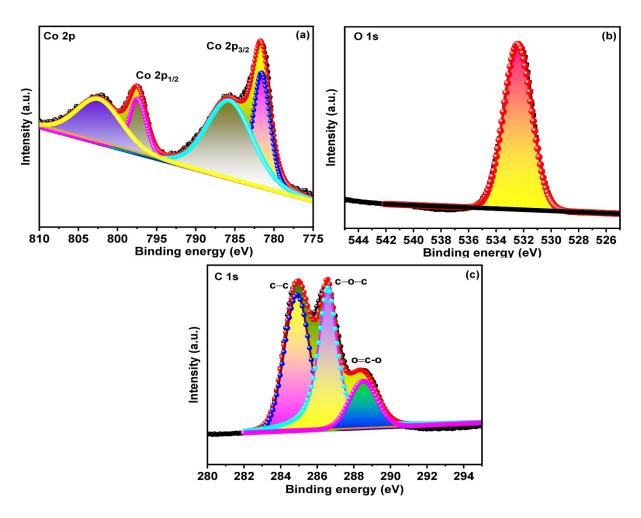


Fig. S5. XPS survey spectra of 1: Co 2p, O1s and C1s

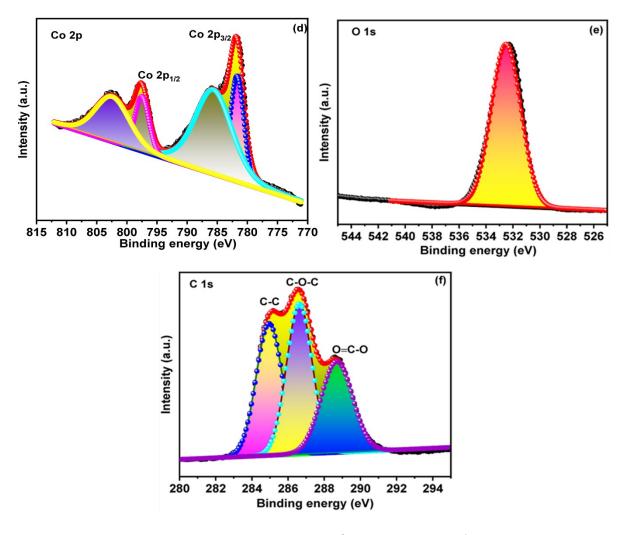


Fig. S6. XPS survey spectra of 2: Co 2p, O1s and C1s

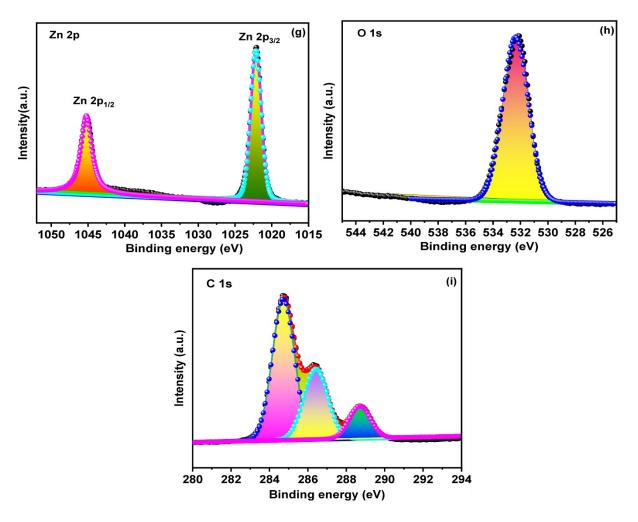


Fig. S7. XPS survey spectra of 3: Co 2p, O1s and C1s

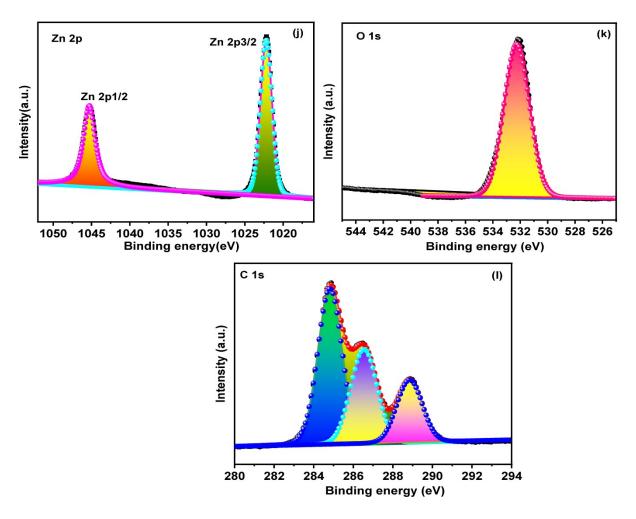
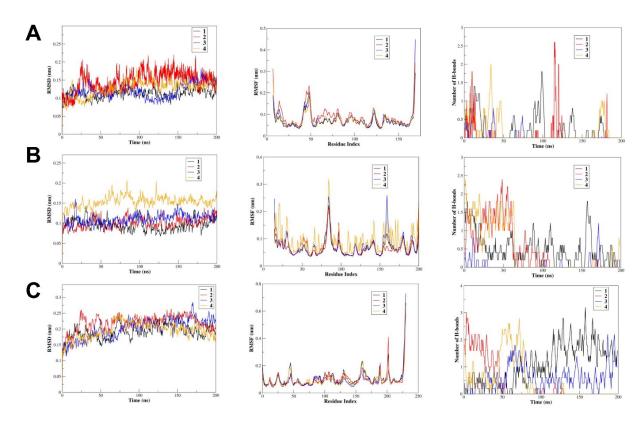



Fig. S8. 4: Zn 2p, O1s and C1s.

Fig. S9: The root mean square deviation (RMSD), root mean square fluctuation (RMSF), and the number of hydrogen bonds (H-bonds) values for complexes of compounds **1**, **2**, **3**, and **4** against LasR protein receptor of *Pseudomonas aeruginosa* (**B**), *Escherichia coli* gyrase B (**A**), and LcpA ligase from *Bacillus subtilis* (**C**) as calculated from 200 ns all-atom molecular dynamics simulations.

Table S5. Inhibitory percentages of metal salt($Co(OAc)_2.4H_2O$) at various concentrations against the three strains.

Concentration	E. coli	P. aeruginosa	B. subtilis
$(\mu g/mL)$			
125	12.0 ± 0.13	15.1±0.009	12.6 ± 0.05
250	16.6 ± 0.05	23.1 ± 0.04	18.9 ± 0.01
500	23.2 ± 0.01	28.2 ± 0.04	22.9 ± 0.05
600	49.6 ± 0.02	48.0 ± 0.03	43.0 ± 0.01
800	64.1 ± 0.05	57.7 ± 0.008	50.3 ± 0.02
1000	65.30 ± 0.02	63.1 ± 0.01	52.4 ± 0.05

Table S6. Inhibitory percentages of metal salt($Zn(OAc)_2.2H_2O$) at various concentrations against the three strains.

Concentrations (µg/mL)	E. coli	P. aeruginosa	B. subtilis
125	8.45±0.006	6.69 ± 0.005	4.0±0.05
250	14.7 ± 0.03	13.7 ± 0.039	8.93 ± 0.001
500	17.9 ± 0.002	16.7 ± 0.027	18.2 ± 0.05
600	24.7 ± 0.005	20.6 ± 0.01	23.9 ± 0.01
800	40.7 ± 0.001	32.6 ± 0.007	27.0 ± 0.03
1000	53.0 ± 0.01	50.1 ± 0.01	44.6 ± 0.1

Table S7. Inhibitory percentages of parent ligand (H_2 toua) at various concentrations against the three strains.

Concentrations (µg/mL)	E. coli	P. aeruginosa	B. subtilis
125	22.2 ± 0.009	7.72 ± 0.01	4.05±0.13
250	24.9 ± 0.004	13.7 ± 0.09	10.3 ± 0.01
500	31.6 ± 0.01	22.1 ± 0.05	11.2 ± 0.010
600	31.4 ± 0.007	34.4 ± 0.03	$16.1 \pm .004$
800	51.9 ± 0.05	43.2 ± 0.08	22.5 ± 0.04
1000	57.9 ± 0.04	45.8 ± 0.07	30.3 ± 0.005

Table S8. Inhibitory percentages of parent ligand(H₂eoba) at various concentrations against the three strains.

Concentrations	E. coli	P. aeruginosa	B. subtilis
(μg/mL)			
125	17.1 ± 0.04	8.79 ± 0.05	1.17 ± 0.007
250	21.9 ± 0.004	5.38 ± 0.01	10.9 ± 0.01
500	26.8 ± 0.01	42.5 ± 0.005	10.4 ± 0.03
600	43.8 ± 0.03	55.5 ± 0.01	15.9 ± 0.001
800	49.7 ± 0.01	56.5 ± 0.2	23.7 ± 0.006
1000	57.42 ± 0.09	48.5 ± 0.01	36.9 ± 0.2

References

S1. N. Joshi, L. F. da Silva, F. M. Shimizu, V. R. Mastelaro, J.-C. M'Peko, L. Lin and O. N. Oliveira Jr, *Microchim. Acta*, 2019, 186, 418.