

Supplementary Material

Facile Construction of type-I Fe-MOF@g-C₃N₄/BiOI Heterojunction for Boosting Photo-Fenton Catalytic Degradation of Ofloxacin: Performance, DFT Calculations, Pathway, Toxicity assessment and Mechanism

Yunwen Fu^a, Shijie Chen^{a,b,*}, Ning Liu^{a,b}, Xiang Li^{a,b}, Dongxuan Guo^{a,b}, Xinjia Zhang^c, Renjiang Lv^{a,b}, Wencheng Gu^d, Jiaqi Zhang^a

^aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P.R. China

^bHeilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, P.R. China

^cCollege of Light Industry and Textiles, Qiqihar University, Qiqihar 161006, P.R. China

^d Network Information Center, Qiqihar University, Qiqihar 161006, P.R. China

Corresponding authors:

*E-mail address: :csj060@163.com; Fax: +86-452-2742575; Tel: +86-452-2742575

Text S1. Characterizations

X-ray diffraction (XRD) (Smart Lab, Rigaku Co., Japan) was used to characterise the crystallographic information of the resulting photocatalysts with a Cu-K α source ($\lambda= 1.5418 \text{ \AA}$) at 40 kV and a scan rate of 5° min^{-1} . Fourier transform infrared (FT-IR) spectroscopy (Frontier, PerkinElmer Co., USA) was used to study the functional groups in the photocatalysts. The morphologies of the prepared samples were examined using field emission scanning electron microscopy (SEM) (S-4300, Hitachi Co., Japan) and transmission electron microscopy (TEM) (H-7650, Hitachi Co., Japan) at an accelerating voltage of 200 kV. Using BaSO₄ as a standard, the UV-Vis diffuse reflectance spectra (DRS) of the resulting samples were obtained using a UV-Vis spectrophotometer (UV2450, Shimadzu Co., Japan). The samples' room-temperature photoluminescence (PL) spectra were obtained using a photoluminescence detector (F-4500, Hitachi Co., Japan) with an excitation wavelength of 390 nm. The surface elemental composition was measured using X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi, Thermo Fisher Co., USA) with monochromatic Al K α radiation.

Text S2. Testing Methods

The photocatalytic degradation reactor was operated for dark adsorption first, and then the xenon lamp was turned on to allow the photodegradation system to be irradiated under visible light. At regular intervals, 1-2 mL of the degradation solution was withdrawn from the reactor using a syringe. The solution was filtered through a 0.22 μ m filter to remove the photocatalyst, and the absorbance of OFX was measured at 292 nm using ultraviolet-visible spectrophotometry. The removal efficiency (R) of OFX was calculated using the following formula:

$$R = \frac{C_0 - C_t}{C_0} \times 100\% \quad (1)$$

where C_0 is the initial concentration of OFX, C_t is the concentration of OFX at time t, and R is the removal efficiency of OFX.

Liquid chromatography-mass spectrometry (LC-MS) (Thermo Scientific Ultimate 3000 UPLC/Q-Exactive Orbitrap MS) the liquid chromatography column employed was a Thermo Scientific Hypersil GOLD C18 Column (50 \times 2.1 mm, 1.9 μ m). For mass spectrometry analysis, full-scan mode was configured for both positive (ESI $^+$) and negative (ESI $^-$) ion detection.

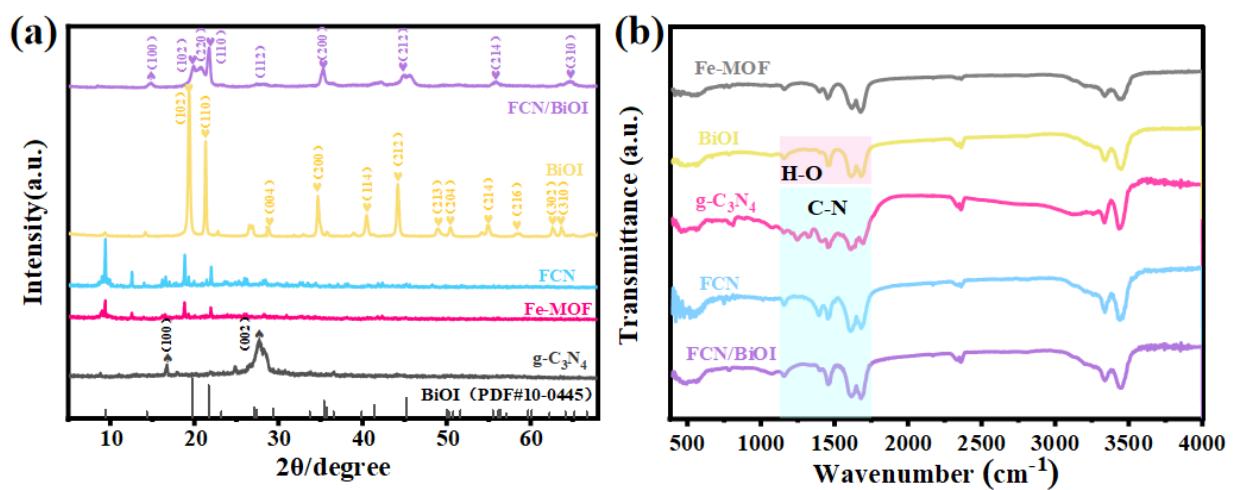
Text S3. Photoelectrochemical Measurements

An electrochemical workstation (CHI 660E, Shanghai, China) was used to evaluate the electrochemical properties of the photocatalysts. A three-electrode system was employed: a saturated calomel electrode (SCE) as the reference electrode, a platinum sheet as the counter electrode, and the photocatalyst deposited on FTO conductive glass as the working electrode. Transient photocurrent response and Mott-Schottky measurements were performed using KCl solution as the electrolyte. Electrochemical impedance spectroscopy (EIS) was tested using $K_3[Fe(CN)_6]$ solution as the electrolyte.

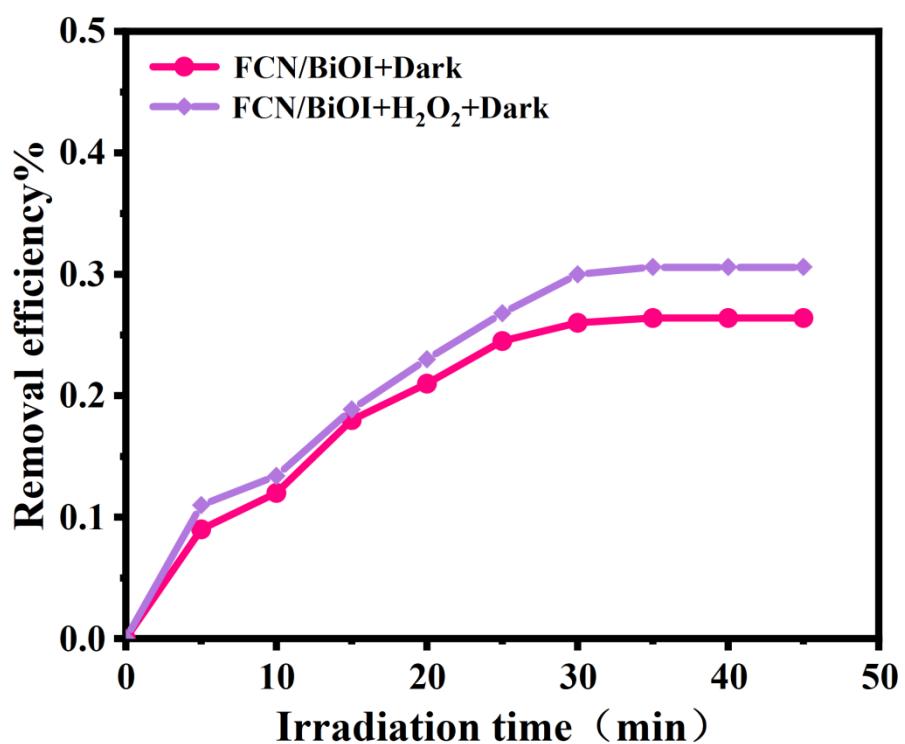
Text S4. DFT calculations

All calculations in this study were performed using the Vienna Ab-initio Simulation Package (VASP) [1]. Spin-polarization effects were incorporated into the periodic density functional theory (DFT) calculations, while the projector-augmented wave (PAW) method was employed to describe the electron-ion interactions, with an energy cutoff of 450.0 eV. The Perdew-Burke-Ernzerhof (PBE) functional, based on the generalized gradient approximation (GGA), was used to account for the exchange-correlation interactions between electrons [2]. Brillouin zone sampling was restricted to the Γ point. To obtain accurate electronic structures, the density of states (DOS) curves were calculated using the HSE06 hybrid functional [3].

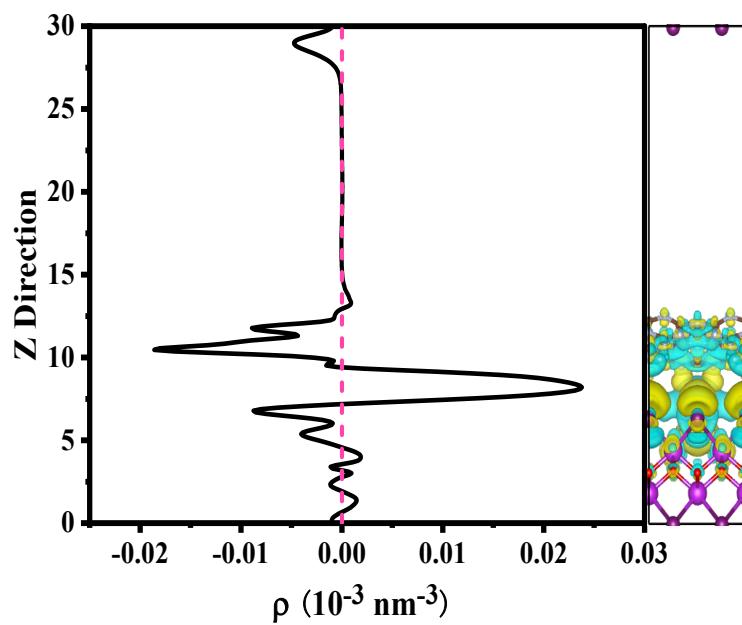
Text S5. Equations


The band structures of BiOI and g-C₃N₄ were calculated using the following equations:

$$E(RHE) = E(NHE) + 0.0591pH \quad (2)$$


$$E(NHE) = E(Ag/AgCl) + 0.197 \quad (3)$$

$$E_{VB} = VB - E(RHE) \quad (4)$$


$$E_{CB} = E_{VB} - E_g \quad (5)$$

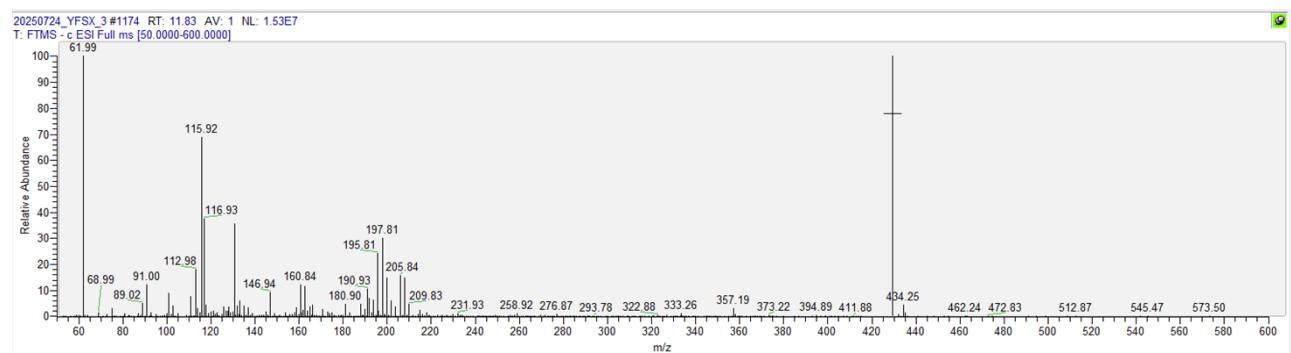

Fig. S1. (a) XRD and (b) FTIR of BiOI, g-C₃N₄, Fe-MOF, FCN and FCN/BiOI

Fig. S2. Performance diagram of OFX removal efficiency by catalyst alone and catalyst-H₂O₂ system under dark conditions.

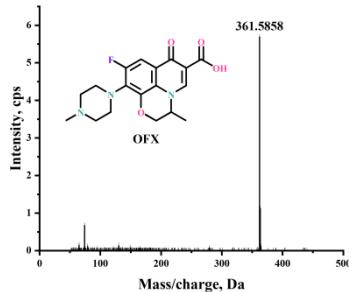
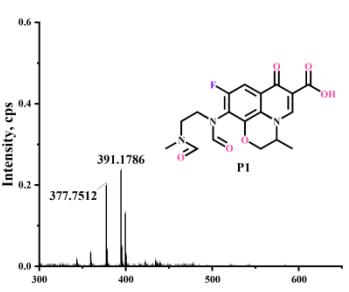
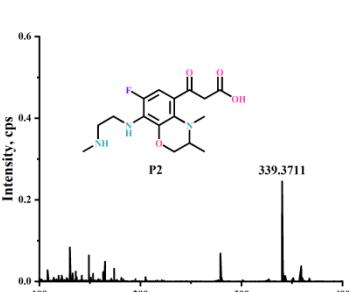
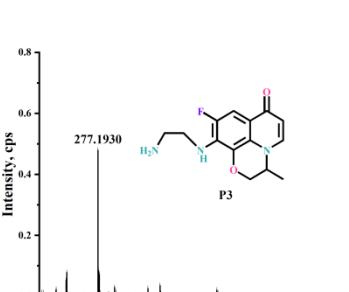
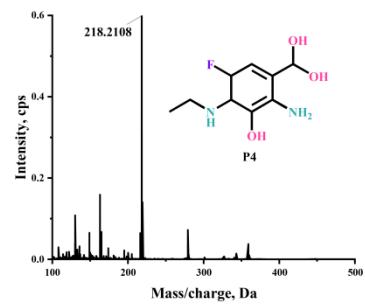





Fig. S3. The planar-averaged charge density difference and 3D charge density difference of BiOI/g-C₃N₄ composites.

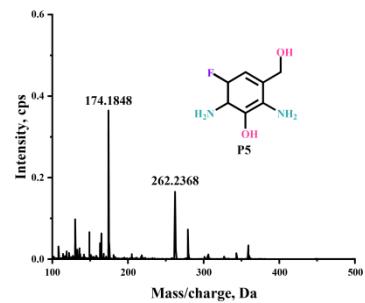
Fig. S4. Mass spectra graphs of OFX degradation.


Table S1. The identified possible intermediate products during OFX degradation from the LC-MS data.

Name	Empirical formula	Exact m/z value (g mol ⁻¹)	Molecular structure
OFX	C ₁₈ H ₂₀ FN ₃ O ₄	361	
P1	C ₁₈ H ₁₈ FN ₃ O ₆	391	
P2	C ₁₆ H ₂₂ FN ₃ O ₄	339	
P3	C ₁₄ H ₁₆ FN ₃ O ₂	277	

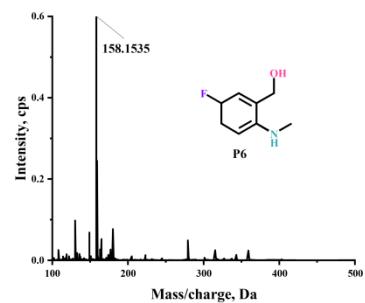
P4

$$\text{C}_9\text{H}_{15}\text{FN}_2\text{O}_3$$


218

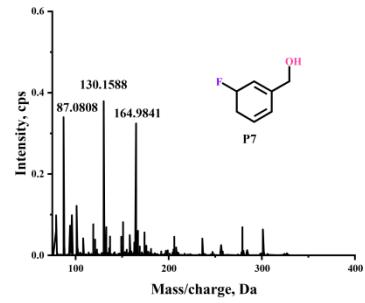
P5

$$\text{C}_7\text{H}_{11}\text{FN}_2\text{O}_2$$

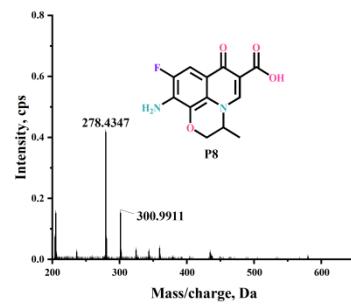

174

P6

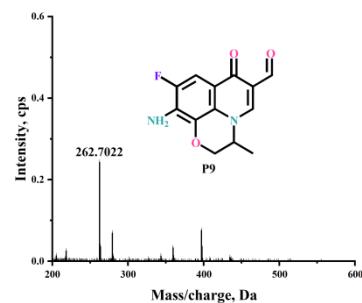
C₈H₁₂FNO


158

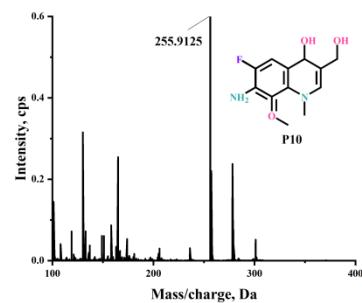
P7


C₇H₉FO

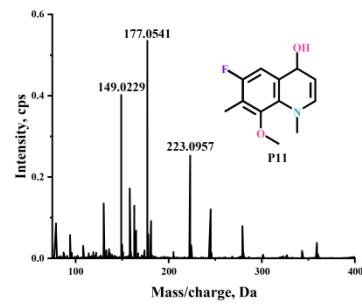
130


P8 C₁₃H₁₁FN₂O₄

278


P9 C₁₃H₁₁FN₂O₃

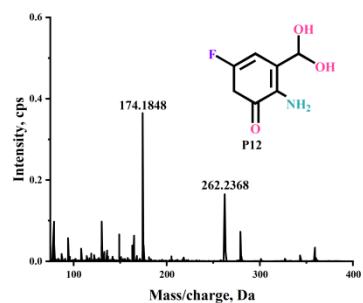
262


P10 C₁₂H₁₅FN₂O₃

255

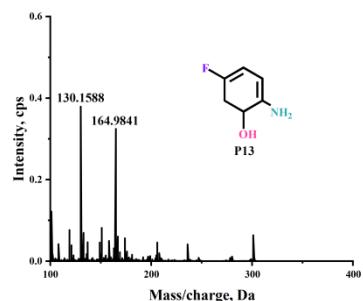
P11 C₁₂H₁₄FNO₂

223



P12

$C_7H_8FNO_3$


174

P13

C_6H_8FNO

130

References:

- [1] G. Kresse, J. Furthmüller, Comp. Mater.Sci, 1996, 6(1), 15-50.
- [2] I. Plowas-Korus, J. Kaczkowski, New J. Chem., 2022, 46(32), 15381-15391.
- [3] A.D. Becke, J. Chem. Phys, 2014, 140(18), 18A301.