Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2026

Supporting Information

In Situ Grown CuSiOx Nanoflowers on
Carbon Nanofibers for Electrochemical CO,
Reduction to Methane

Fangfang Zhong, Penggao Liu, Xueyan Wu, Xingyun Li, Yan Lv*, Jixi Guo*

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources;

College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.

E-mail: lvvan2014@xju.edu.cn; ixguol012@163.com; jdz@xju.edu.cn

10


mailto:lvyan2014@xju.edu;%20cn
mailto:jxguo1012@163.com

Fig.

S1

b)

SEM

images

of

Si0;.

20



8i0,/CNFs
30

Percentage (%)

-

100 120 140 160 180 200 220 240
Length distribution (nm)

Fig. S2 SEM images of (a-c) SiO,/CNFs, and (d) diameter size distribution

SiO,/CNFs.
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Fig. S4 (a, b) SEM images of CuxO/CNFs.
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Fig. SS Cu k-edge EXAFS for Cu foil, CuO, Cu,0, CuSiO3/CNFs-3 and CuSiOs.
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Fig. S6 The corresponding EXAFS fitting curve for CuSiOs.
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Fig. S7 Diagram of three-electrode air-tight H-type electrolytic cell.
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Fig. S8 In-stiu-gas-chromatography spectra under various potentials of CuSiO;/CNFs-

3 in chronoamperometry detected by (a) FID; (b) TCD detectors and (c) Standard curve.
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Fig. S9 (a) '"H NMR spectra of the electrolyte for CO,RR at —1.6 V (vs. RHE) using

CuSiO5/CNFs-3; (b) Standard curve. DMSO is used as an internal standard.
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Fig. S10 FEs of CO,RR products on catalyst at different the mass of SiO,: (a) gas and

liquid products; (b) CH4 and C,..

At —1.6 V (vs. RHE), as the silica content increases, FEcy4 follows a volcano-shaped

trend, while the FE,. reduction products significantly increases from 11.3% to 28.2%.
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Fig. S11 FEs of CO,RR products on catalyst at different the carbonization temperature:

(a) gas and liquid products; (b) CH4 and C,;.

At —1.6 V (vs. RHE), as the carbonization temperature increases from 800 °C to 1000
°C, the FEcp4 exhibits a volcano-shaped trend, while the Faradaic efficiency for CO,

reduction (FEcp+) products significantly increases from 11.4% to 38.4%.
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Fig. S12 FEs of CO,RR products on catalyst at different the mass ratio of SiO,/CNFs

to copper salts: (a) 5:1; (b) 2:1; (c) 1:1; (d) 1:2; (e) 1:5; (f) gas products.

At—1.6 V (vs. RHE), when adjusting the ratio of SiO,/CNFs to Cu salts, we found that
the main product of the catalyst is CH,4, with the Faradaic efficiency (FE) for CHy

consistently around 50%, and the 1:1 ratio is the optimal.
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Fig. S13 CV curves of (a) CuSiO3/CNFs-3, (b) CuSiO;, (¢) CuxO/CNFs.

Electrochemically active surface area (ECSA): ECSA =R, < §

S'is the real surface area, which was generally equal to the geometric area of glassy
carbon electrode (S = 0.2827433 cm2). The roughness factor R, is estimated from the
ratio of double-layer capacitance Cy for the working electrode (assuming that the
average double-layer capacitance of a smooth metal surface is 20 pF cm™2)!!), that is, R,

= Cq/20 uF cm 2,
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Fig. S14 Normalized LSV curves of CuSiO3;/CNFs-3 and CuSiO; to the

electrochemically active surface area.
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Fig. S15 [-V curves of (a) CuSiO3/CNFs-3. CuSiO;. CuyO/CNFs and (b)

conductivity.

The conductance is calculated as follows:

p=RxS/I

d=1/p

Where R is the resistance, / indicate the thickness of the piece being measured and S

1s the contact area.
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Fig. S17 Stability test of CuSiO; at the highest CO,RR Faradaic efficiency potential.
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Fig. S18 Diagram of flow cell device.
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Fig. S19 Stability of CuSiO3;/CNFs-3 at 100 mA c¢cm™2 in flow cell.
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Fig. S20 XRD patterns of (a, b) CuSiO3/CNFs-3 after CO,RR reaction.
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Fig. S21 XRD patterns of CuSiO; after CO,RR reaction.
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200 nm

Fig. S22 (a, b) SEM images of the CuSiO;/CNFs-3 sample after electroreduction.
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Fig. S23 (a-d) TEM images of the CuSiO3/CNFs-3 after electroreduction.
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Fig. S24 (a, b) SEM images of the CuSiO; sample after electroreduction.
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Fig. S25 Cu 2p XPS spectra of CuSiO3/CNFs-3, CuSiO; and CuxO/CNFs sample. (a)

before electroreduction and (b-d) after electroreduction.
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Fig. S26 Cu LMM Auger spectra CuxO/CNFs.
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Fig. S27 CO,—TPD profiles of CuSiO3/CNFs-3.
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Fig. S28 BET specific surface area test.
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Table S1. ICP-OES results of CuSiOs/CNFs-3.

Cu (At.%) Si (At.%)

CuSiO;/CNFs-3 46.4% 53.6%
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Table S2. Structural parameters extracted from the EXAFS fitting.

Catalysts path CN R/A c%A?  AE(eV) R-facter
Cu-O 34 1.93 0.005
CuSiO;/CNFs-3 Cu-O-Cu 1.4 2.96 0.008 3 0.01
Cu-O-Si 1.0 3.68 0.002
Cu-O 3.5 1.95 0.004
CuSiO; Cu-O-Cu 1.4 2.95 0.008 3 0.02
Cu-O-Si 1.1 3.69 0.002

AE? was refined as a global fit parameter, returning a value of (3 + 1) eV. Date ranges:
2.5<k<13 A, 1.0<R<3.5A. The number of variable parameters is 11, out of total
of 15 independent date points, R-factor for this fit is 1%. The distagnces for Cu-O, Cu-

O-Cu and Cu-O-Si are form the crystal structure of CuSiOs.
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Table S3. The performance comparison of this work with the state-of-the-art results.

Catalysts Potential (V vs. RHE) FE cn4(%) References
CuSiO3/CNFs-3 -1.6 67.8 This work
CuSiOx -1.27 72.5 (2]
e-CusSi -1.2 49 (3]

Cu-CeOx -1.4 67.8 (4]
CuxSi -1.4 72.9 (5]
CoO/Cu/PTFE -1.4 60 (6]
CuoAgNWs -1.17 72 7]
Cu-1 -1.08 57.2 (8]
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Table S4. EIS equivalent circuit simulation results.

Sample Ry Rt
CuSiO3/CNFs-3 84.74 6.13
CuO/CNFs 84.54 254.7
CuSiO; 86.29 40.82
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