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Fig. S1 (a, b) SEM images of SiO2.
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Fig. S2 SEM images of (a-c) SiO2/CNFs, and (d) diameter size distribution of 

SiO2/CNFs.
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Fig. S3 (a, b) SEM images of CuSiO3. 
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Fig. S4 (a, b) SEM images of CuXO/CNFs. 
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Fig. S5 Cu k-edge EXAFS for Cu foil, CuO, Cu2O, CuSiO3/CNFs-3 and CuSiO3. 
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Fig. S6 The corresponding EXAFS fitting curve for CuSiO3.
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Fig. S7 Diagram of three-electrode air-tight H-type electrolytic cell.
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Fig. S8 In-stiu-gas-chromatography spectra under various potentials of CuSiO3/CNFs-

3 in chronoamperometry detected by (a) FID; (b) TCD detectors and (c) Standard curve.
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Fig. S9 (a) 1H NMR spectra of the electrolyte for CO2RR at −1.6 V (vs. RHE) using 

CuSiO3/CNFs-3; (b) Standard curve. DMSO is used as an internal standard.
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Fig. S10 FEs of CO2RR products on catalyst at different the mass of SiO2: (a) gas and 

liquid products; (b) CH4 and C2+.

At −1.6 V (vs. RHE), as the silica content increases, FECH4 follows a volcano-shaped 

trend, while the FEC2+ reduction products significantly increases from 11.3% to 28.2%.
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Fig. S11 FEs of CO2RR products on catalyst at different the carbonization temperature: 

(a) gas and liquid products; (b) CH4 and C2+.

At −1.6 V (vs. RHE), as the carbonization temperature increases from 800 °C to 1000 

°C, the FECH4 exhibits a volcano-shaped trend, while the Faradaic efficiency for CO2 

reduction (FEC2+) products significantly increases from 11.4% to 38.4%.



130

Fig. S12 FEs of CO2RR products on catalyst at different the mass ratio of SiO2/CNFs 

to copper salts: (a) 5:1; (b) 2:1; (c) 1:1; (d) 1:2; (e) 1:5; (f) gas products.

At −1.6 V (vs. RHE), when adjusting the ratio of SiO2/CNFs to Cu salts, we found that 

the main product of the catalyst is CH4, with the Faradaic efficiency (FE) for CH4 

consistently around 50%, and the 1:1 ratio is the optimal.
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Fig. S13 CV curves of (a) CuSiO3/CNFs-3, (b) CuSiO3, (c) CuXO/CNFs.

Electrochemically active surface area (ECSA): ECSA = Rf × S

S is the real surface area, which was generally equal to the geometric area of glassy 

carbon electrode (S = 0.2827433 cm−2). The roughness factor Rf is estimated from the 

ratio of double-layer capacitance Cdl for the working electrode (assuming that the 

average double-layer capacitance of a smooth metal surface is 20 µF cm−2)[1], that is, Rf 

= Cdl/20 µF cm−2.



150

Fig. S14 Normalized LSV curves of CuSiO3/CNFs-3 and CuSiO3 to the 

electrochemically active surface area.
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Fig. S15 I−V curves of (a) CuSiO3/CNFs-3、CuSiO3、CuXO/CNFs and (b) 

conductivity.

The conductance is calculated as follows:

ρ = R × S / I

δ = 1/ρ

Where R is the resistance, I indicate the thickness of the piece being measured and S 

is the contact area.
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Fig. S16 Tafel slopes of CuSiO3/CNFs-3、CuSiO3、CuXO/CNFs.
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Fig. S17 Stability test of CuSiO3 at the highest CO2RR Faradaic efficiency potential.
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Fig. S18 Diagram of flow cell device.
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Fig. S19 Stability of CuSiO3/CNFs-3 at 100 mA cm−2 in flow cell.
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Fig. S20 XRD patterns of (a, b) CuSiO3/CNFs-3 after CO2RR reaction.
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Fig. S21 XRD patterns of CuSiO3 after CO2RR reaction.
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Fig. S22 (a, b) SEM images of the CuSiO3/CNFs-3 sample after electroreduction.
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Fig. S23 (a-d) TEM images of the CuSiO3/CNFs-3 after electroreduction.
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Fig. S24 (a, b) SEM images of the CuSiO3 sample after electroreduction. 
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Fig. S25 Cu 2p XPS spectra of CuSiO3/CNFs-3, CuSiO3 and CuXO/CNFs sample. (a) 

before electroreduction and (b-d) after electroreduction.
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Fig. S26 Cu LMM Auger spectra CuXO/CNFs.
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Fig. S27 CO2−TPD profiles of CuSiO3/CNFs-3.
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Fig. S28 BET specific surface area test.
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Table S1. ICP–OES results of CuSiO3/CNFs-3.

Cu (At.%) Si (At.%)

CuSiO3/CNFs-3 46.4% 53.6%
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Table S2. Structural parameters extracted from the EXAFS fitting.

Catalysts path CN R/Å σ2/Å2 ΔE(eV) R-facter

Cu-O 3.4 1.93 0.005

Cu-O-Cu 1.4 2.96 0.008CuSiO3/CNFs-3

Cu-O-Si 1.0 3.68 0.002

3 0.01

Cu-O 3.5 1.95 0.004

Cu-O-Cu 1.4 2.95 0.008CuSiO3

Cu-O-Si 1.1 3.69 0.002

3 0.02

ΔE0 was refined as a global fit parameter, returning a value of (3 ± 1) eV. Date ranges: 

2.5 ≤ k ≤ 13 Å−1, 1.0 ≤ R ≤ 3.5 Å. The number of variable parameters is 11, out of total 

of 15 independent date points, R-factor for this fit is 1%. The distagnces for Cu-O, Cu-

O-Cu and Cu-O-Si are form the crystal structure of CuSiO3. 
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Table S3. The performance comparison of this work with the state-of-the-art results.

Catalysts Potential (V vs. RHE) FECH4(%) References

CuSiO3/CNFs-3 -1.6 67.8 This work

CuSiOX -1.27 72.5 [2]

e-Cu5Si -1.2 49 [3]

Cu-CeOX -1.4 67.8 [4]

CuXSi -1.4 72.9 [5]

CoO/Cu/PTFE -1.4 60 [6]

Cu9Ag1NWs -1.17 72 [7]

Cu-l -1.08 57.2 [8]
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Table S4. EIS equivalent circuit simulation results.

Sample Rs Rct

CuSiO3/CNFs-3 84.74 6.13

 CuXO/CNFs 84.54 254.7

CuSiO3 86.29 40.82
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