Supporting Information

Natural Products Targeting Amino Acid Metabolism: From Discovery to Synthetic Development

Hyun Su Kim^{a,1}, Ahmed H.E. Hassan^{b,c,d,1}, Kyuho Moon^b, Jaehoon Sim^{b,c,d,*}

^a College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do 11160, Republic of Korea

^b College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea

^c Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea

^d Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea

List of Contents

Table S1 . N S5	Vatural Products-Based Inhibitors Modulating Glutamine Metabolism	51-
Table S2 . N S7	Natural Products-Based Inhibitors Modulating Cysteine/Cystine Metabolism S	36-
Table S3. Na	atural Products-Based Inhibitors Modulating Arginine Metabolism	11
Table S4. N S15	Natural Products-Based Inhibitors Modulating Tryptophan Metabolism	12-

Enzyme	Structure and Name	Natural Source	Chemical development	Indication	Ref.
ASCT2	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ H_2N & & \\ & & \\ & & \\ H_2N & \\ & & \\ \end{array} \\ \begin{array}{c} & \\ P \\ \\ P \\ \\ \\ \\ P \\ \end{array} \end{array}$	$ \begin{array}{c} 0 \\ + 1 \\ + 2 \\ N \\ + 2 \\ 0 \\ 1 \\ L - Glutamine \end{array} $	Decreasing pKa of the amide proton; Enhancing binding affinity	C6 rat glioma cells (in-vitro)	88
	$H_{2N} \rightarrow H_{2N} \rightarrow H$		Improving inhibition of glutamine uptake (3-fold than GPNA)	HEK293 cells (in-vitro)	89
	$\begin{array}{c} & & \\$		Improving inhibition of glutamine uptake (100-fold than GPNA)	Colorectal cancer (in vivo)	90- 92
	$f_{R_{1}} = CI, R_{2} = H$ $f_{R_{1}} = CI, R_{2} = H$ $f_{R_{2}} = CI, R_{2} = H$ $f_{S}: R_{1} = CI, R_{2} = H$ $f_{S}: R_{1} = H, R_{2} = tert - Bu$ $2-Amino-4-bis(2-((3-(4-chlorophenyl)prop-2-yn-1-yl)oxy)benzyl)aminobutanoic acid (5a)$ $2-Amino-4-bis(5-(tert-butyl)-2-((3-phenylprop-2-yn-1-yl)oxy)benzyl)aminobutanoic acid (5b)$		Enhancing selectivity for ASCT2; Improving inhibition of glutamine uptake, microsomal stability, and bioavailability; Suppressing tumor growth in an A549 xenograft model, with higher tumor growth inhibition (TGI)	Non-small- cell lung cancer (NSCLC) (in vivo)	93

Table S1. Natural Products-Based Inhibitors Modulating Glutamine Metabolism

ASCT2	I4 (2 <i>S</i> ,4 <i>R</i>)-4-(((4'-Fluoro-[1,1'-biphenyl]-4-yl) sulfonyl)oxy)pyrrolidine-2-carboxylic acid	N OH H O 11 L-Proline	Enhancing apparent binding affinity (K _i = 8.07 µM)	HEK293 cells (in-vitro)	99
	15 L- <i>cis</i> -Hydroxyproline biphenyl-4-carboxylate ester (L <i>c</i> -BPE)		Stereospecific inhibition; Enhancing apparent binding affinity $(K_i = 0.86 \ \mu M)$	HEK293 cells (in-vitro)	100
GLS	$ \begin{array}{c} $	$H_2N \xrightarrow{O} OH OH$	Improving chemical and metabolic stability; Enhancing cerebrospinal fluid (CSF)-to- plasma ratio (10-fold than DON)	Glioblasto ma multiforme (GBM) (in vivo)	101
	18 Isopropyl 6-Diazo-5-oxo-2- (((phenyl(pivaloyloxy)) methoxy)carbonyl)amino)hexanoate	16 (S)-6-Diazo-5- oxo-L-nor leucine (DON)	Enhancing CSF- to-plasma ratio and brain-to- plasma ratio (15-fold and 9-fold than DON)	HIV- associated neurocogni tive disorders (HAND) (in vivo)	102

	$H_{+,+,+} = \int_{0}^{0} \int_{0}^{+} \int_{0}^{+} \int_{0}^{+} \int_{0}^{+} \int_{0}^{+} \int_{0}^{+} \int_{0}^{+} \int_{0}^{+} \int_{0}^{19}$ Isopropyl 2-(6-Acetamido-2-(2-acetyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamido)hexanamido)-6-diazo-5-oxohexanoate	$ \begin{array}{c} $	Enhancing tumor cell- to-plasma ratio (55-fold than DON); Enhancing tumor exposure in plasma and GI (5-fold and 11-fold than DON)	Lymphoma (in vivo)	103
GLS	$\begin{array}{c} & \overset{O}{\underset{NH_2}{}} \overset{V}{\underset{N}{}} \overset{V}{}} \overset{V}{\underset{N}{}} \overset{V}{\underset{N}{}} \overset{V}{\underset{N}{}} \overset{V}{\underset{N}{}$		Orally bioavailable Reducing the generation of MDSCs	MYC- expressing medulloblasto ma, IDH1 mutation glioma, Thyroid cancer (in vivo)	104- 107
	$\begin{array}{c} & \overset{O}{\underset{HN}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}}}{\overset{O}{\overset{O}}}}}}}}}$		Enhancing tumor exposure in plasma and GI (6-fold and 11-fold than DON)	Pancreatic ductal adenocarcino ma (PDAC), castration-resi stant prostate cancer (CRPC), lung cancer (in vivo) Clinical trials; NCT 06027086 (Recruiting)	108- 111

GLS	22 Ethyl (<i>E</i>)-6-diazo-2-((((4-((4-((dimethylamino) phenyl)benzyl)oxy)carbonyl)amino)-5-oxohexanoate (Azo-DON)	$H_2N = 0$	Hypoxic- activated prodrug of DON; TSR of 84.2 % in hepatoma cancer (monotherapy); TSR of 96.6 % in colon cancer (combination with CBP)	Hepatoma cancer, colon cancer (in vivo)	112
	S = S = S = S = S = S = S = S = S = S =	(S)-6-Diazo-5- oxo-L-nor leucine (DON)	Redox- responsive prodrug of DON; Improved safety profile than JHU083	Colon cancer (in vivo)	113
GLUD1	25 2-Allyl-1-hydroxyanthracene-9,10-dione (R162)	O OH O OH O OH 24 Purpurin	Improving potency and specificity for GLUD1 inhibition; Enhancing the cell- permeability; Attenuating cancer cell proliferation and tumor metastasis	Lung cancer, breast cancer, LKB1- deficient lung cancer Non-small- cell lung cancer (NSCLC) (in vivo)	38, 114, 115

Enzyme	Structure and Name	Natural Source	Chemical development	Indication	Ref.
CBS	$HO \xrightarrow{\downarrow}_{HNH_2} OH OH$ $HO \xrightarrow{\downarrow}_{HNH_2} OH$ $C = C$ 27 α -(L,L)-bis-hydrazino acid (6S)	$HO \xrightarrow{\downarrow}_{NH_2} S \xrightarrow{\downarrow}_{O} OH$ 26 (L,L)-Cystathionine	Enhancing apparent binding affinity $(K_i = 48 \ \mu M);$ Reduction of infarct volume with an 83% at 30 min prior- stroke treatment and a 66% reduction at 1 h post-stroke treatment	transient middle cerebral artery occlusion (tMCAO) for ischemic stroke (In vivo)	158
GCL	$H_2N + OH + OH$ $H_2N + OH$	$\begin{array}{c} & & \\ H_2 N + & \\ & \\ H_2 N + & \\ H$	Enhancing inhibiting potency (100-fold than MSO); Decreasing renal GSH levels in mice (<20% of the control level)	melanoma, multiple myeloma (MM), neuroblast oma (In vivo)	159- 164
	$ \begin{array}{c} $		Enhancing binding, cellular potency and effectively inducing ferroptosis <i>in vitro</i>	canine cancer cell lines (In vivo)	165
	HO CF_3 O=S=NH H_2N OH OH (KOJ-2)		Ester removal allowed enhanced GCL inhibition, potent ferroptosis induction in cells, and improved bioavailability upon oral administration	HT1080 xenograft- nude mice model	165

 Table S2. Natural Products-Based Inhibitors Modulating Cysteine/Cystine Metabolism

system X _c - (xCT)	(S)-4-Carboxylphenylglycine	H ₂ N OH 32 L-Phenylglycine	A competitive non-substrate inhibitor; Enhancing apparent binding affinity $(K_i = 5 \mu M)$	LRM55 and SNB- 19 glioma cells (in-vitro)	166
	$HO \rightarrow HO \rightarrow S$ $HO \rightarrow S$ $S \rightarrow Capsazepine (CPZ)$	HO HO HO H N O 34 Capsaicin	Inhibition of cysteine uptake $(IC_{50} = ~ 3 \mu M);$ Increasing ROS levels	Cancer- induced bone pain (CIBP) (In vivo)	167

Enzyme	Structure and Name	Natural Source	Chemical development	Ref.
ARG1/2	HN^{OH} HN^{OH} HN^{OH} H_2N^{OH} H^{OH} H^{H		Inhibition of ARG ($IC_{50} = 2 \mu M$ for rARG, 50 μM for mARG); Enhancing binding affinity ($K_i = 0.5 \mu M$, 20-fold than NOHA); Anti-leukemic activity in hypoxia	212- 214
	HO, B-OH H $_2N$ \rightarrow OH $_0$ \rightarrow OH $_0$ 38 2(S)-Amino-6-boronohexanoic Acid (ABH)		First boronic acid-based ARG inhibitor; High-affinity inhibition $(IC_{50} = 0.8 \ \mu M \text{ for rARG}, K_d = 0.11 \ \mu M);$ Nonadrenergic, noncholinergic (NANC) nerve-mediated cavernosal smooth muscle relaxation	215- 217
	HO _B -OH H ₂ N G S-(2-Boronoethyl)-L-cysteine (BEC)	$H_2N \downarrow NH \downarrow J H_2N \downarrow OH 36 L-Arginine$	High-affinity inhibition ($K_i = 0.4-0.6 \ \mu M$, $K_d = 2.22 \ \mu M$); NO-mediated cavernosal smooth muscle relaxation	218
	$HO-B$ $HO-B$ H_2N H_2N H_2N H_2N $HO-B$ H_2OH H_2		Dual ARG1/2 inhibitor; Enhancing ARG inhibition (IC ₅₀ = 20 nM for hARG1, 39 nM for hARG2); Antitumor activity for glioma, melanoma, leukemia, ovarian, lung, and colon cancer; First-in-human (FIH) Phase I trial in advanced/metastatic solid tumors	219- 222
	HO _B OH , NH ₂ OH 41 OATD-02		Potent ARG inhibition (IC ₅₀ = 86 nM for ARG1, 296 nM for ARG2); Antitumor activity for lung, colon, and breast cancer; Phase 1/2 trials evaluating monotherapy and combination with immune checkpoint inhibitors in advanced solid tumors	223

Table S3. Natural Products-Based Inhibitors Modulating Arginine Metabolism

Enzyme	Structure and Name	Natural Source	Chemical development	Ref.
	$H_2N \xrightarrow{i}_{O} OH$ 59 1-Methyl-D-tryptophan (D-1-MT/Indoximod/ NLG8189)	58 D/L-Tryptophan	Potent immunomodulator via non- enzymatic mTORC1 pathway activation (IC ₅₀ \approx 70 nM); Antitumor activity in HER2-driven breast cancer, prostate cancer, metastatic melanoma, pediatric brain tumor (DIPG); Synergistic effects with chemotherapy and checkpoint inhibitors demonstrated in Phase I/II trials	299- 303
IDO1	$ \begin{array}{c} \\ C\overline{\Gamma} H_{3}N^{+} \downarrow H \\ \downarrow H \\ \hline \end{array} \\ \begin{array}{c} \\ H \\ \hline \\ H \\ $		Optimized prodrug of indoximod for enhanced oral bioavailability (5-fold than indoximod); Enhanced C _{max} and AUC; Favorable toxicology profile (NOAEL 120 mg/kg BID in non-human primates); Superior antitumor efficacy in murine melanoma models via enhanced T cell-mediated responses	304
	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ $	$HO \qquad HO \qquad$	Potent IDO1 enzymatic inhibition (IC ₅₀ = 0.9μ M)	305
	Br H H 64 5-Br-brassinin	$ \begin{array}{c} $	Competitive IDO1 inhibitor $(K_i = 24.5 \ \mu M);$ Orally bioavailable with superior pharmacokinetics (T _{max} = 526.3 min and AUC _∞ = 1485 $\mu g \cdot min/mL$); Selective for IDO over TDO2; Enhancing tumor regression in combination with paclitaxel	306
TDO	$\begin{array}{c} & & \\$	65	Potent uncompetitive TDO inhibitor $(IC_{50} = 0.937 \pm 0.215 \ \mu\text{M};$ $K_i = 0.356 \pm 0.078 \ \mu\text{M});$ Rosbust cellular inhibition $(IC_{50} = 0.054 \ \mu\text{M} \text{ in U87 MG cells};$ $0.053 \ \mu\text{M} \text{ in HEK293-hTDO cells})$	307

Table S4. Natural Products-Based Inhibitors Modulating Tryptophan Metabolism>

	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 67\\ Tryptanthrin derivatives \end{array}$	65 Tryptanthrin	Potent uncompetitive TDO inhibitor $(IC_{50} = 0.101 \pm 0.062 \ \mu\text{M};$ $K_i = 0.215 \pm 0.020 \ \mu\text{M});$ Robust cellular inhibition $(IC_{50} = 0.040 \ \mu\text{M} \text{ in U87 MG cells};$ $0.061 \ \mu\text{M} \text{ in HEK293-hTDO cells})$	307	
IDO/ TDO dual	68 Tryptanthrin derivative	$\begin{split} & \varsigma \\ & \varsigma \\ & \varsigma \\ & \varsigma \\ & s \\ & Tryptanthrin \end{split}$	Potent IDO1 inhibition (IC ₅₀ = 0.534 μ M for rhIDO1, 0.023 μ M in HEK293-IDO1 cells); Moderate TDO inhibition (IC ₅₀ = 0.937 \pm 0.148 μ M); Enhanced T cell proliferation and antitumor activity in LLC (Lewis lung cancer) tumor model; 62% tumor volume reduction and Treg depletion <i>in vivo</i> .	283, 285, 307	
	$ \begin{array}{c} & & & \\ & &$			Potent IDO1/TDO dual inhibition (IDO1 enzymatic IC ₅₀ = 0.50 μ M; cellular IC ₅₀ = 0.02 μ M / TDO enzymatic IC ₅₀ = 0.76 μ M; cellular IC ₅₀ = 0.09 μ M); Uncompetitive inhibition with K _i = 2.64 μ M (IDO1); 0.31 μ M (TDO); Enhanced T cell proliferation and superior efficacy over L-1-MT; Tumor volume reduction (56.2% in LLC, 47.3% in H22 models)	308
	H + H + H + H + H + H + H + H + H + H +		Potent IDO1/TDO dual inhibition (IDO1 IC ₅₀ = 0.46 μ M; TDO IC ₅₀ = 0.06 μ M); IDO1 inhibitory activity in HeLa cells (IC ₅₀ = 0.16 μ M)	285	
	$HO \xrightarrow{O} (V = V = V)$ $HO \xrightarrow{V} (V = V)$ $HO V$		Potent IDO1/TDO dual inhibition (IDO1 IC ₅₀ = 0.12 μ M; TDO IC ₅₀ = 0.03 μ M); IDO1 inhibitory activity in HeLa cells (IC ₅₀ = 0.06 μ M)	285	
	$\overrightarrow{H}_{N,NH}$ 73 1-(1 <i>H</i> -Imidazole-5-yl)-9 <i>H</i> - pyrido[3,4- <i>b</i>]indole	T2 Norharmane	Potent IDO1/TDO dual inhibition (IDO1 IC ₅₀ = $3.53 \pm 0.81 \mu$ M; TDO IC ₅₀ = $1.15 \pm 0.09 \mu$ M); Anti-inflammatory effects in LPS- induced BV2 microglial cells; High plasma exposure (AUC _{0-∞} = 4464.9 h·ng/mL); Moderate oral bioavailability (F = 52.55%); Amelioration of depressive-like behaviors in LPS-induced mouse model	309	

KATII	(S)-4-(Ethylsulfonyl) benzoylalanine (S-ESBA)	$H_2 O NH_2$ $H_2 O NH_2$ T4 L-Kynurenine	First synthetic selective KAT II inhibitor (IC ₅₀ = 6.1 μM); Selective inhibition without affecting KAT I, KMO, or KYNU; Decreased extracellular KYNA levels in rat hippocampus	310	
кмо	$ \begin{array}{c} $	$\begin{cases} \downarrow \downarrow$		Potent KMO inhibition $(IC_{50} = 0.9 \pm 0.1 \mu M);$ High selectivity over KYNU $(IC_{50} = 100 \pm 12 \mu M);$ In vivo elevation of KYN (13-fold) and KYNA (up to 5-fold) in rat brain, liver, and blood; Increased hippocampal extracellular KYNA; Dose-dependent sedative and anticonvulsant effects in rats and DBA-2 mice	311
	CI CI CI CI CI CI CI CI CI CI		Potent KMO inhibition (IC ₅₀ = 0.2 ± 0.02 μM); 15-fold greater potency than m-NBA; Sustained 10- to 80-fold elevation of hippocampal extracellular KYNA	312	
	$\nabla_{CI}^{O} \rightarrow_{N \leq N}^{O}$ 78 CHDI-340246		Subnanomolar KMO inhibition (IC ₅₀ = 0.5-0.6 nM); Excellent selectivity over KATs and KYNU; Favorable pharmacokinetics (oral bioavailability ~64%, low plasma clearance 291 mL/h/kg)	313	
	$CI \qquad O \qquad $		Nanomolar KMO inhibition (IC50 ≈ 6 nM); Protection against lung, kidney, and liver injury in AP-MODS rodent models	314, 315	
	$ \begin{array}{c} $		Potent KMO inhibition (pIC ₅₀ = 8.3; cellular pIC ₅₀ = 8.5); Picomolar affinity (Ki \approx 50 pM) with slow dissociation kinetics (T ₁ / ₂ \approx 10 h); Favorable PK (low clearance, high exposure); Protective effects in rat model of acute pancreatitis (AP)	315, 316	

$ \begin{array}{c} \begin{array}{c} & CI \\ & & O \\ & & N \end{array} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ &$	V H_2 O H_2	Potent KMO inhibition (IC ₅₀ = 2.3 nM for hKMO; 0.7 nM for Pf-KMO); High affinity ($K_i \approx 12$ pM) with a prolonged dissociation half- life (T ₁ / ₂ ≈ 12 h)	315, 316
--	---	--	-------------