Electronic Supplementary Information

High loading of Pd nanoparticles enhanced by chelating 1,2diol subunit in flexible porous polymers for catalytic reduction of 4-nitrophenol

Zhi-Cun Wang, ^a Boya Kuang, ^b Hanyuan Chen, ^b Nicolas Bogliotti, ^c Ran

Guo, ^d Yan Liu, ^b Jin-Xiu Zhou^a* and Mu-Hua Huang^a*

^aSchool of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China

^bExperimental Center for Advanced Materials, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China

^cUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France

[°]Perkinelmer Management (Shanghai) Co., Ltd. No.1670, Zhangheng Road, Shanghai, 201203, China

1. General information for materials and measurements	S4
1.1 Chemicals and materials	S4
1.2 Characterization and instruments	S4
2. Syntheses of model compound and polymers	S5
2.1 The synthesis of model compound 3	S5
2.2 The synthesis of BIT-POP-75	S6
2.3 The synthesis of BIT-POP-75-OH	S7
3. Preparation of Pd@BIT-POP-75-OH and its catalytic performance	S8
3.1 Loading of Pd NPs on BIT-POP-75-OH to make the catalyst Pd@BIT-POP-75-OH	S8
3.2 Catalytic reduction reaction on 4-nitrophenol using Pd@BIT-POP-75-OH	S8
4. Figures in ESI	S9
Figure S1 ¹ H-NMR of model compound (3) in DMSO- <i>d6</i>	S9
Figure S2 ¹³ C-NMR of model compound (3) in CDCl ₃	S9
Figure S3 FT-IR of model compound (3)	S10
Figure S4 FT-IR of BIT-POP-75	S10
Figure S5 FT-IR of BIT-POP-75-OH	S11
Figure S6 FT-IR of Pd@BIT-POP-75-OH	S11
Figure S7 TG of BIT-POP-75 and BIT-POP-75-OH	S12
Figure S8 SEM image of BIT-POP-75	S12
Figure S9 SEM image of BIT-POP-75-OH	S13
Figure S10 TEM image of BIT-POP-75	S13
Figure S11 TEM image of BIT-POP-75-OH	S14
Figure S13 UV-Vis absorption spectra of 4-NP before and after addition of NaBH $_4$ soluti	onS15
Figure S14 1 H NMR of 4-NP, 4-AP standard sample and crude product in water phase	e after
catalytic reduction in DMSO- <i>d6</i>	S15
Figure S15 TLC of 1-3(1 means 4-NP, 2 means 4-AP, 3 means crude product after redu	uction,
PE:EA=2:1)	S16
Figure S16 Standard curve of 4-NP in different concentration	S16
Figure S17 Standard curve of 4-AP in different concentration	S17
Figure S18 Concentration of palladium in the solution after each cycle of catalyzation	S17
Figure S19. Catalytic mechanism of 4-NP reduced by Pd@BIT-PO-75-OH	S18
5. Tables in ESI	S19
Table S1 The BET results of BIT-POP-75-79	S19
Table S2 Optimization of polymerization to give BIT-POP-75	S19
Table S3 Solubility of BIT-POP-75 and BIT-POP-75-OH	S19
Table S4 Low field test results of BIT-POP-75 and BIT-POP-75-OH	S20
Table S5 Elemental analysis of BIT-POP-75 and BIT-POP-75-OH	S20
Table S6 Porosity Parameters of BIT-POP-75, BIT-POP-75-OH and Pd@BIT-POP-75-OH	S20
Table S7 Optimization of catalytic performance	S20
Table S8 Concentration of 4-NP and 4-AP and conversion rate during ten cycles of ca	atalytic
reduction	S21
Table S9 Catalytic performance comparisons between Pd@BIT-POP-75-OH and other PdNPs	for the

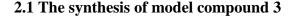
Contents

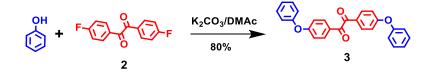
reduction of 4-NP	S22
5. Reference	S23

1. General information for materials and measurements

1.1 Chemicals and materials

All chemicals including toluene, chloroform, methanol, ethanol, ethyl acetate, N, N'-dimethyl acetamide (DMAc) were purchased from commercial suppliers (Beijing Tongguang Fine Chemical Co.) and used without further purification, unless otherwise noted. The monomers of 9,9'-Bis(4-hydroxylphenyl)fluorene (BHPF) and 4,4'-difluo robenzoin were purchased from energy-chemical Co., and they were recrystallized fro m methanol and ethyl acetate correspondingly before use. Anhydrous K₂CO₃ was bou ght from Tianjin Zancheng Co., which was meshed into powder and dried in oven (10 0 °C) overnight before use. Dueterated solvents such as CDCl₃ and DMSO-d6 were pu rchased from Qingdao Tenglong Tech. Co.


1.2 Characterization and instruments

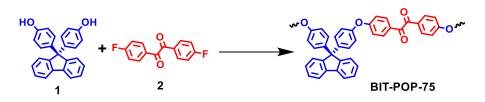

Solution ¹H-NMR spectra were taken by Varian Mercury-400 MHz and Bruker Avance III 40 0 MHz NMR (¹H at 400 MHz, ¹³C at 100 MHz). Solid-state ¹³C Cross-Polarization Magic Angle S pinning (CP/MAS) NMR spectra were obtained on a Bruker Avance III 400 MHz Wide Bore spect rometer (14.2 T). A 4.0 mm MAS probe and ZrO₂ motor were used, and spin rates at 13 kHz. Che mical shifts (δ) are reported in ppm. ¹³C Solid State Nuclear Magnetic Resonance T1 relaxation tim e T1 measurements were performed on Bruker Avance III 400 MHz Wide Bore spectrometer (14.2 T). A 4.0 mm MAS probe and ZrO2 motor were used, and spin rates at 13 kHz. a SR pulse sequen ce were used with τ ranging from 0.1 to 100 s. Spectra were recorded with an acquisition time of 5 0 ms. Data was analyzed and fitted by topspin 3.5. Infrared spectra were recorded on a Perki nElmer Spectrum Two Fourier transform spectrometer. Elemental analysis was measur ed in the analytical instrumentation center of Beijing University, Beijing China, by usi ng ElementarVario EL CUBE. Thermogravimetric analysis (TGA) was carried out on a Q600 SDT (TA, US) thermogravimetric analyzer, heated from 25 °C to 800 °C at a r ate of 10 °C/minute under N₂ atmosphere. Solution UV-vis spectra were recorded on a Milton Roy Spectronic 3000 Array spectrophotometer. The morphologies of polymers were studied using a Hitachi S4800 scanning electron microscope (SEM) and FEIT T

ecnai G2 F30 transmission electron microscope (TEM) working at 300 kV. GPC was measured by Agilent Gel Permeation Chromatography instrument using THF as the m obile phase with eluting rate of 1 ml/min, and monodisperse polystyrene standard sam ple was used to calibrate. N₂ adsorption/desorption studies were carried out at 77 K us ing the BET V-sorb 4800 (Chinainstru& Quantumtech (Hefei) Co.,Ltd, China) and Mi croActive for ASAP 2460 2.02 (Micromeritics Inc., USA). BET surface area and pore volume were obtained by Brunauer-Emmett-Teller (BET) method between the pressur e range of 0.05-0.35 P/P₀. Polymer pore size distributions were calculated from the ad sorption branches using non-local density functional theory (NLDFT) methods. Metal ions concentrations were determined by ICP- instrument of Agilent 725 model. Powde r XRD analysis was carried out in Bruker D8 Advance, with the range in 10-80° in a s can rate of 5°/min.

Solid State 13C T1 relaxation time measurements were performed on Bruker Ava nce III 400 MHz Wide Bore spectrometer (14.2 T). A 4.0 mm MAS probe and ZrO2 m otor were used, and spin rates at 13 kHz. A cphirt1 pulse sequence was used with τ ran ging from 0.1 to 100 s. Spectra were recorded with an acquisition time of 50 ms. Othe r parameter follows these setupments: rg=103, D1=10s, L20=3, NS=8. Data was analy zed and fitted by topspin 3.5, Fitting function type was invrec, integral for C-O-C rang e from 161.9ppm to 156.8ppm, integral for hydroxy carbon range from 80.6ppm to 74. 4ppm.

2. Syntheses of model compound and polymers

To a mixture of phenol (8 mmol, 752.90 mg) and anhydrous potassium carbonate (9.22 mmol, 1.27 g) in a 250 ml flask added DMAc (100 ml) portionwise under N_2 at mosphere carefully. Ten resulted mixture was heated at 150 °C over 10 h, then the mix ture was cooled down to 130 °C, to which was added a solution of 4,4'-difluorobenzil


(3.82 mmol, 941 mg) in DMAc (20 ml) through a syringe. And the reaction mixture w as heated at 150 °C for further 10 h. When cooling down to room temperature, the reac tion mixture was filtered to remove potassium carbonate and the filtrate was poured in to 1 M hydrochloric acid. The resulting precipitate was collected and dried at 80 °C in vacuum oven to get the title compound as a brown powder (1.2 g, Yield: 80 %).

¹H-NMR (400 MHz, DMSO- d_6) δ (ppm): 7.92 (d, J = 8.8 Hz, 4H), 7.48 (t, J = 8.4 Hz, 4H), 7.28 (t, J = 7.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 6H), 7.11 (d, J = 8.8 Hz, 4H).

¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 193.2, 163.6, 154.8, 132.4, 130.2, 127.5, 1 25.1, 120.5, 117.4.

FT-IR (cm⁻¹): 3043(w), 1662(s), 1600(s).

2.2 The synthesis of BIT-POP-75

High Temperature Method: A mixture of 4,4'-difluorobenzil (20 mmol, 4.92 g), 9,9'-bis(4-hydroxyphenyl)fluorene (20 mmol, 7.05 g) and anhydrous potassium carbo nate (60 mmol, 8.29 g) in toluene (20 ml) and anhydrous DMAc (40 ml) was heated at 60 °C in a three-necked round bottom flask using a Dean-Stark condenser under an at mosphere of N₂. Subsequently, the reaction mixture was heated and stirred vigorously at 165 °C for 40 min. After cooling to room temperature, the viscous reaction mixture was poured into methanol (500 ml) to give a brown suspension with noodles-liked soli d, which was stirred for 1 h. The solid product was filtered and collected, and then it w as redissolved in CHCl₃(100 ml) within 2 h, and then methanol (500 ml) was added to precipitate. The solid product was further collected by filtration, and then washed with water at 100 °C (350 ml) to remove K₂CO₃. After a pale yellow solid was freeze-dried for 1 day, the titled polymer of BIT-POP-75 was observed (10.0 g, Yield: 86 %).

Low Temperature Method: 4,4'-difluorobenzil (20 mmol, 4.92 g), 9,9'-bis(4-hy droxyphenyl)fluorene (20 mmol, 7.05 g) were added to a dry three-neck round-bottom flask with DMF (100 mL) under an atmosphere of N2. The reaction mixture was stirr ed at 65 °C until all reagents dissolved. Fine potassium carbonate (60 mmol, 8.29 g) w

as gradually added to the system, and then the reaction mixture was stirred for 72 hour s. Then, a highly viscous solution was cooled down and poured into water (600 mL). T he polymer solid was obtained by filtration. The purification was performed by dissolv ing the material in chloroform (160 mL) and precipitating from methanol (500 mL). T he solid product was further collected by filtration, and then washed with water. The p ale yellow solid was freeze-dried for 1 day to get target product (8.6 g, Yield:74.3%).

¹H-NMR (400 MHz, CDCl₃) δ (ppm): 7.88(d, *J*=8.4 Hz, 2H), 7.78(d, *J*=7.2 Hz, 2 H), 7.41, 7.40, 7.36, 7.30(d, *J*=7.2 Hz, 2H), 7.27, 7.26, 7.22(d, *J*=8 Hz, 2H), 6.97(d, *J*=8.4 Hz, 2H), 6.91(d, *J*=8.4 Hz, 2H).

¹³C CPMAS δ (ppm): 194.47, 164.50, 153.07, 140.08, 128.53, 65.13.

FT-IR (cm⁻¹): 3041(w), 1672(m), 1589(s)

EA: C, 81.35%; H, 3.86%; O, 11.65%.

2.3 The synthesis of BIT-POP-75-OH

To the solution of BIT-POP-75 (200 mg) in THF (20 ml) was added NaBH₄ (400 mg), the resulting pale yellow reaction mixture was stirred vigorously for 24 h. Then t he white reaction mixture was quenched with methanol, the solvents were removed un der vacuum using rotary evaporation, the white residue was washed with hot water, fil tered, and then freeze-dried to afford the title polymer of BIT-POP-75-OH. (191 mg, Y ield: 95%).

¹H-NMR (400 MHz, DMSO-d6) δ (ppm): 7.88, 7.47, 7.35, 7.27, 7.20, 7.08, 6.84, 5.17.

¹³C CPMAS δ (ppm): 158.40, 153.97, 140.81, 128.29, 77.42, 65.14. FT-IR (cm⁻¹): 3558(w), 3031(w), 1600(m). EA: C, 81.07%; H, 4.67%; O, 11.43%.

3. Preparation of Pd@BIT-POP-75-OH and its catalytic performance

3.1 Loading of Pd NPs on BIT-POP-75-OH to make the catalyst Pd@BIT-POP-75-OH

To a solution of BIT-POP-75-OH (200 mg) in THF (20 ml) was added Pd(OAc)₂ (0.4 mmol, 68 mg), the resulted reaction mixture was heated and stirred vigorously at 60 °C for 3 h. After cooling to the room temperature, the reaction mixture was treated with a solution of sodium borohydride (1.5 g) in methanol (20 ml), and the mixture wa s stirred continuously for 3 h. After that, the solvent was removed under vacuum by ro tary evaporation. The titled catalyst of Pd@BIT-POP-75-OH was obtained as a black s olid, after the black residue was washed with water for 3 h and freeze-dried for 1 day (245 mg, Yield: 95%, Pd content: 12.53 wt%, quantified by the ICP-OES).

¹³C CPMAS δ (ppm): 158.68, 153.43, 140.54, 128.25, 79.31, 65.16.

FT-IR (cm⁻¹): 3035(w), 1597(w), 1500(s).

3.2 Catalytic reduction reaction on 4-nitrophenol using Pd@BIT-POP-75-OH

To a 4-NP aqueous solution (3 ml, 0.01 M) in a 20 ml vial was added NaBH₄ aqu eous solution (9 ml, 0.5 M) and the Pd@BIT-POP-75-OH aqueous dispersion (1 ml, 2. 5 mg/ml) in that order, the resulting reaction mixture was stirred vigorously. Over a ce rtain period of time, the reaction mixture was allowed to stand for several seconds. Th en 0.5 ml of the mixture solution was taken, the solid was filtered, and the filtrate was diluted to 10 ml of water for UV–vis measurements. The UV absorption spectra of the solution at different times were recorded. To further verify the stability and recyclabil ity of the Pd@BIT-POP-75-OH catalyst, ten turns were cycled under the same conditi ons as above, and the conversion rate of each time was calculated. The filtered catalyst was used directly for the next run.

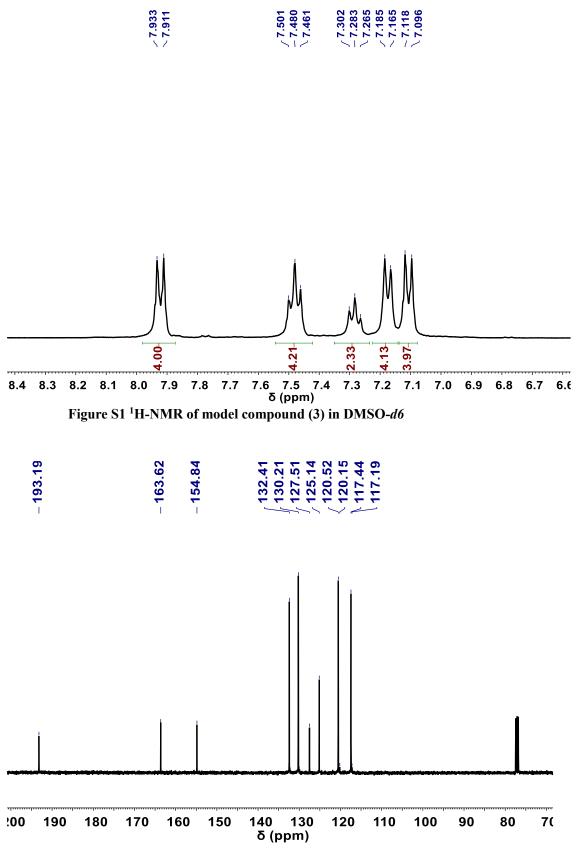


Figure S2 ¹³C-NMR of model compound (3) in CDCl₃

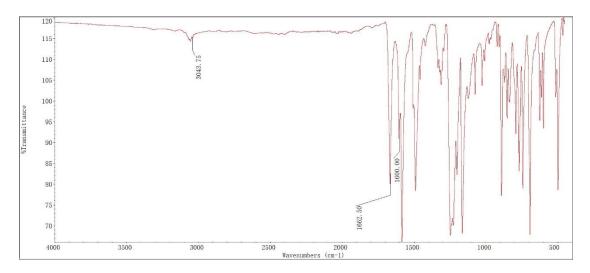


Figure S3 FT-IR of model compound (3)

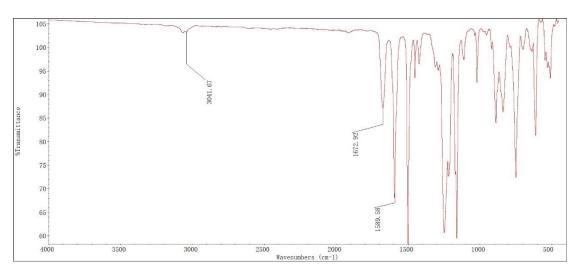


Figure S4 FT-IR of BIT-POP-75

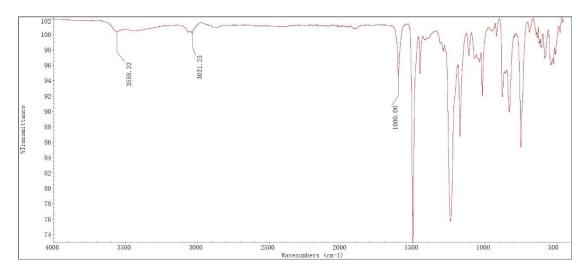


Figure S5 FT-IR of BIT-POP-75-OH

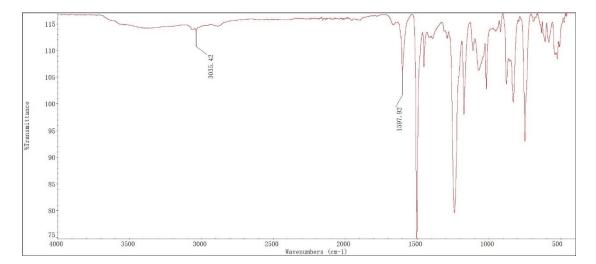


Figure S6 FT-IR of Pd@BIT-POP-75-OH

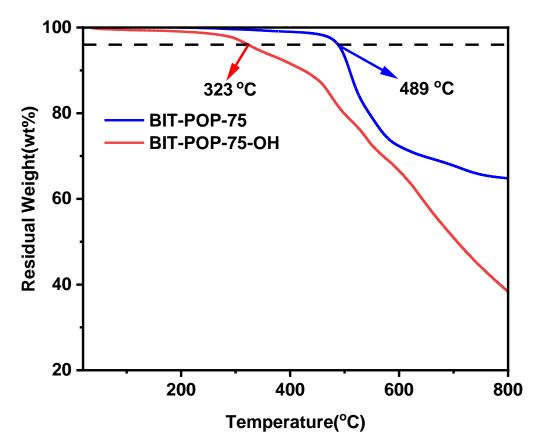


Figure S7 TG of BIT-POP-75 and BIT-POP-75-OH

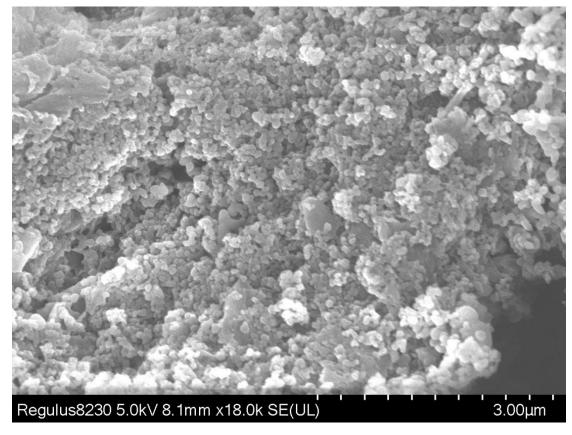


Figure S8 SEM image of BIT-POP-75

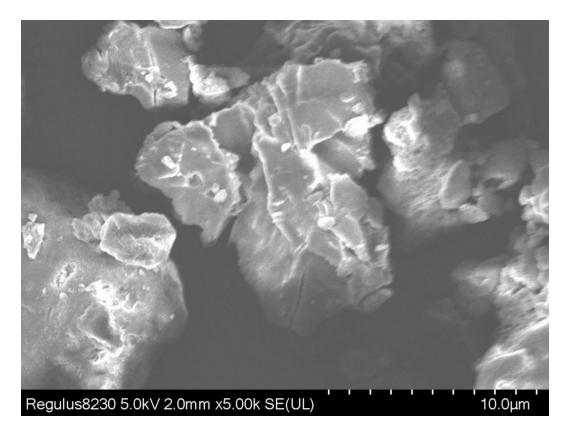


Figure S9 SEM image of BIT-POP-75-OH

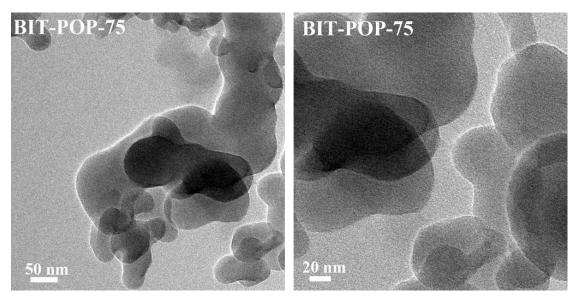


Figure S10 TEM image of BIT-POP-75

Figure S11 TEM image of BIT-POP-75-OH

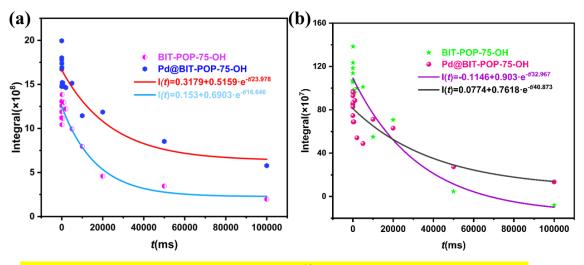


Figure 12. T1 time based on solid-state ¹³C NMR spectra: (a) Based on Carbon c (158 ppm) and (b) Carbon a (67 ppm) in BIT-POP-75-OH and Pd@BIT-POP-75-OH

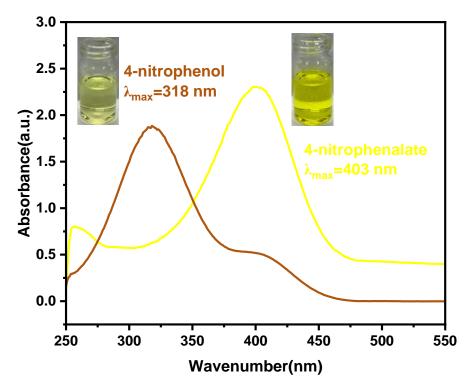
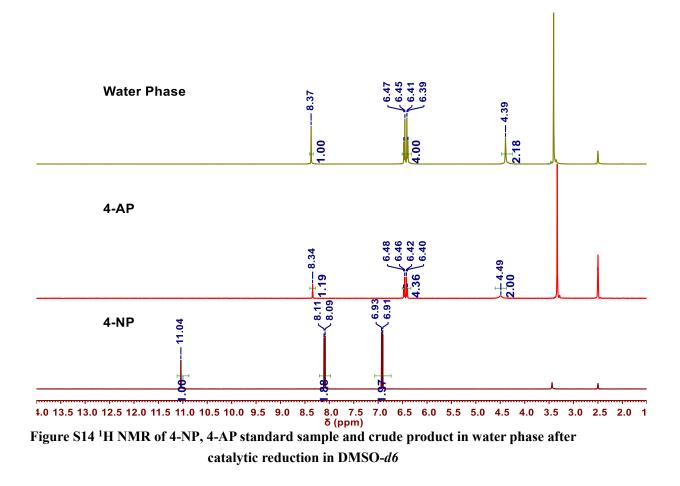



Figure S13 UV-Vis absorption spectra of 4-NP before and after addition of NaBH₄ solution

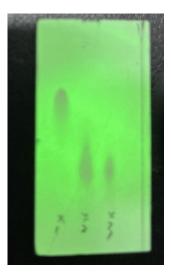


Figure S15 TLC of 1-3(1 means 4-NP, 2 means 4-AP, 3 means crude product after reduction, PE:EA=2:1)

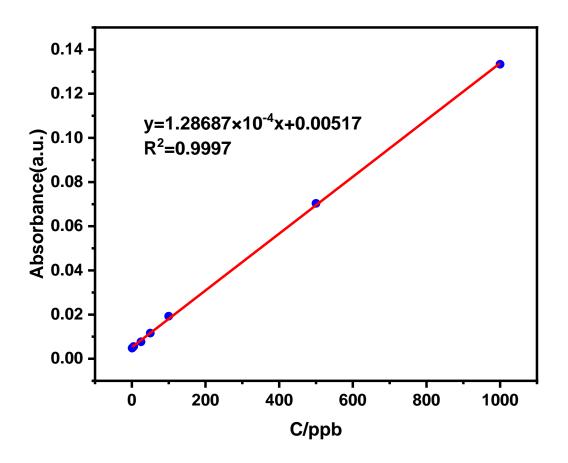


Figure S16 Standard curve of 4-NP in different concentration

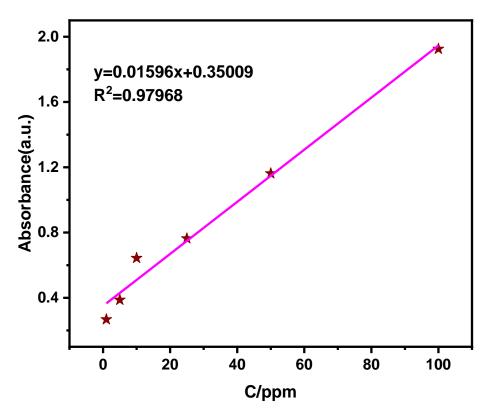


Figure S17 Standard curve of 4-AP in different concentration

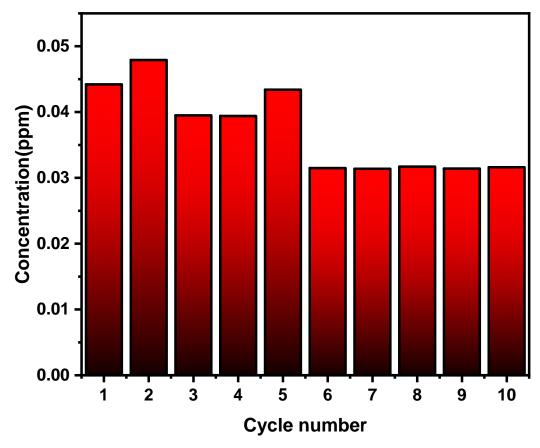


Figure S18 Concentration of palladium in the solution after each cycle of catalyzation

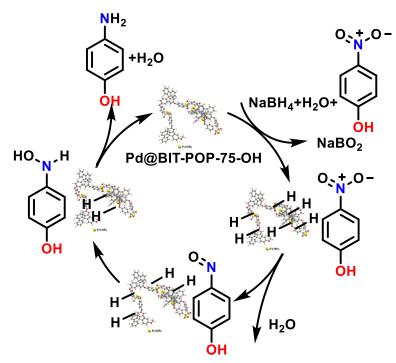


Figure S19. Catalytic mechanism of 4-NP reduced by Pd@BIT-PO-75-OH

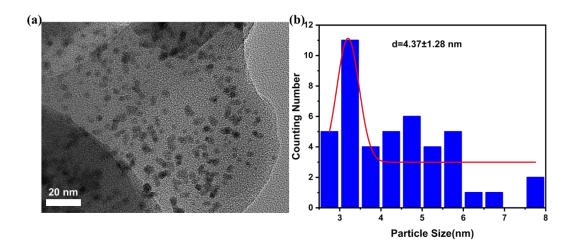


Figure S20 TEM image of recycled Pd@BIT-POP-75-OH after six times (a) and the their diameter distribution of Pd nanoparticles

5. Tables in ESI

Sample name	Structure of 1,2-diol monomer	BET(m ² /g)
BIT-POP-75	HO OH	118
BIT-POP-76	НОГОН	7
BIT-POP-77	F ₃ C CF ₃	48
BIT-POP-78	но	17
BIT-POP-79	HOUTOH	22

Table S1 The BET results of BIT-POP-75-79

Table S2 Optimization of polymerization to give BIT-POP-75

Sample Name	(BET (m^2/g)		
	Mn	$M_{\rm w}$	PDI	DET (III /g)
BIT-POP-75-H ^a	15900	27700	1.74	118
BIT-POP-75-L ^b	6536	8578	1.31	38

^aThe sample obtained by high-temperature method. ^bThe sample obtained by low-temperature method.

Solvent	BIT-POP-75	BIT-POP-75-OH
DCM	\checkmark	Swell
CHCl ₃	\checkmark	Swell
1,4-dioxane	\checkmark	\checkmark
THF	\checkmark	\checkmark
DMF	\checkmark	\checkmark
DMAc	\checkmark	\checkmark
NMP	\checkmark	\checkmark
DMSO	×	\checkmark
CH ₃ CN	×	×
H_2O	×	×
MeOH	×	×

Table S3 Solubility of BIT-POP-75 and BIT-POP-75-OH

Samples	T ₂₁ /ms	T ₂₂ /ms	A ₁ /a.u.	A ₂ /a.u.	Rigid proportions	Flexible proportions
BIT-POP-75	0.0278	0.3588	1	0.0187	98.2%	1.8%
BIT-POP-75-OH	0.026	0.2134	1	0.0289	97.2%	2.8%

Table S4 Low field test results of BIT-POP-75 and BIT-POP-75-OH

Table S5 Elemental analysis of BIT-POP-75 and BIT-POP-75-OH

Quality Percentage (%)						
Samples	Found values			The	oretical va	lues ^a
	С	Η	0	С	Η	0
BIT-POP-75	81.35	3.86	11.65	84.16	4.35	11.50
BIT-POP-75-OH	81.07	4.67	11.43	83.55	5.03	11.41

^aTheoretical values were calculated assuming an ideal structure of BIT-POP-75 and BIT-POP-75-OH for the elemental analysis.

Table S6 Porosity Parameters o	f BIT-POP-75, BIT-POP-75-OI	H and Pd@BIT-POP-75-OH

	Mean				
Samples	$S_{BET}(m^2/g)$	$S_{Lang}(m^2/g)$	diameter of	V _{micro} (cm ³ /g) ^a	V _{total} (cm ³ /g) ^b
			pore(nm)		
BIT-POP-75	118	586	21.66	0.008319	0.64
BIT-POP-75-OH	63	373	28.12	0.004676	0.44
Pd@BIT-POP-75-OH	29	165	20.74	0.001172	0.15

^aMicropore volume calculated from nitrogen adsorption isotherm using the t-plot method. ^bTotal pore volume at $P/P_0 = 0.99$.

Entw	Catalyst with different Pd content	Molar concentration	The time to fully	
Entry	(1 mL, 2.5 mg/mL)	of NaBH4 (9 mL)	react	
1		0.1M	500s	
2	BIT-POP-75-OH-12.43wt%	0.5M	210s	
3		1M	100s	
4	BIT-POP-75-OH-3.85 wt%	0.5M	1h20min	
5	BIT-POP-75-OH-7.19 wt%	0.5M	30min	

Cycle number	Concentration of 4-NP (ppb)	Concentration of 4-NP (mol/L)	Concentration of 4-AP (ppm)	Concentration of 4-AP (mol/L)	Conversion (%)
1	0.005174647	3.71982E-11	0.011029356	3.25228E-06	99.999
2	0.005171921	3.71786E-11	0.010529094	3.2484E-06	99.999
3	0.005185818	3.72785E-11	0.012807948	3.26607E-06	99.999
4	0.005193147	3.73312E-11	0.013957333	3.27499E-06	99.999
5	0.005186995	3.7287E-11	0.012444459	3.26325E-06	99.999
6	0.005207182	3.74321E-11	0.015581933	3.28758E-06	99.999
7	0.005188870	3.73005E-11	0.012670496	3.26501E-06	99.999
8	0.005198496	3.73697E-11	0.014317559	3.27778E-06	99.999
9	0.005176431	3.72111E-11	0.010359486	3.24709E-06	99.999
10	0.005212508	3.74704E-11	0.016882745	3.29767E-06	99.999

 Table S8 Concentration of 4-NP and 4-AP and conversion rate during ten cycles of catalytic reduction

heterogeneous catalysts	metal NPs loading (%)	metal NPs size(nm)	kapp (min ^{-1})	time (min)	TOF (h^{-1})	ref
Pd@TP-POP	1.31	1.4-2.8	0.61	5.75	227.07	[1]
PtNPs@COF	34.4			8	56.4	[2]
Pd@PPM2	1.76	3.45	0.48	6	59.4	[3]
Pd@CHI	3.34	4.086	0.139	30	25.14	[4]
Pd/NHPC	3.22	4.45	0.37	8	122.40	[5]
Ag NPs@SCOF	0.95	20	1.06	3	81	[6]
Pd@DANI-CS-Fe3O4	3.5	3	0.22	14	228.69	[7]
Pd@h-mSiO2-4.9%	4.9	6	0.36	12.33	93.60	[8]
Pd@BIT-POP-75-OH	12.53	4.25	0.967	3.5	175	This work

Table S9 Catalytic performance comparisons between Pd@BIT-POP-75-OH and other PdNPs for the reduction of 4-NP

6. Reference

- J. Yang, M. Yuan, D. Xu, H. Zhao, Y. Zhu, M. Fan, F. Zhang, Z. Dong, J. Mater. Chem. A 2018, 6, 18242-18251.
- [2] S. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H. Gu, W. Zhang, J. Am. Chem. Soc. 2017, 139, 17082–17088.
- [3] M. S. Bashir, X. Jiang, X. Z. Kong, *Eur. Polym. J.* **2020**, *129*, 109652.
- [4] X. Li, F. Dong, L. Zhang, Q. Xu, X. Zhu, S. Liang, L. Hu, H. Xie, Chem. Eng. J. 2019, 372, 516-525.
- [5] X. X. Wu, H. Zhou, New. J. Chem. 2017, 41, 10245-10250.
- [6] N. Wang, F. Wang, F. Pan, S. Yu, D. Pan, ACS Appl. Mater. Interfaces 2021, 13, 3209-3220.
- [7] M. M. Ayad, Mol. Catal. 2017, 439, 72-80.
- [8] M. Tian, J. Colloid Interface Sci. 2018, 521, 132-140.